20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Propositi<strong>on</strong> 3. Let C be a category, <strong>and</strong> R ⊆ Rel(C). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> category C/R # <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

functor F : C → C/R # defined above satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s.<br />

(i) For each i, j ∈ C 0 <strong>and</strong> each (f, f ′ ) ∈ R(i, j) we have F f = F f ′ .<br />

(ii) If a functor G : C → D satisfies Gf = Gf ′ for all f, f ′ ∈ C(i, j) <strong>and</strong> all i, j ∈ C 0<br />

with (f, f ′ ) ∈ R(i, j), <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a unique functor G ′ : C/R # → D such that<br />

G ′ ◦ F = G.<br />

Definiti<strong>on</strong> 4. Let Q be a quiver <strong>and</strong> R ⊆ Rel(PQ). We set<br />

The following is straightforward.<br />

〈Q | R〉 := PQ/R # .<br />

Propositi<strong>on</strong> 5. Let C be a category, Q <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> C, <strong>and</strong> set<br />

R := {(e i , 1l i ), (µ, [µ]) | i ∈ Q 0 , µ ∈ Q ≥2 } ⊆ Rel(PQ),<br />

where e i is <str<strong>on</strong>g>the</str<strong>on</strong>g> path <str<strong>on</strong>g>of</str<strong>on</strong>g> length 0 at each vertex i ∈ Q 0 , <strong>and</strong> [µ] := α n ◦· · ·◦α 1 (<str<strong>on</strong>g>the</str<strong>on</strong>g> composite<br />

in C) for all paths µ = α n . . . α 1 ∈ Q ≥2 with α 1 , . . . , α n ∈ Q 1 . Then<br />

C ∼ = 〈Q | R〉.<br />

By this statement, an arbitrary category is presented by a quiver <strong>and</strong> relati<strong>on</strong>s. Throughout<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this report I is a small category with a presentati<strong>on</strong> I = 〈Q | R〉.<br />

3. Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck c<strong>on</strong>structi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Diag<strong>on</strong>al functors<br />

Definiti<strong>on</strong> 6. Let X : I → k-Cat be a functor. Then a category Gr(X), called <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndiek c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X, is defined as follows:<br />

(i) (Gr(X)) 0 := ∪<br />

{(i, x) | x ∈ X(i) 0 }<br />

i∈I 0<br />

(ii) For (i, x), (j, y) ∈ (Gr(X)) 0<br />

Gr(X)((i, x), (j, y)) :=<br />

⊕<br />

X(j)(X(a)x, y)<br />

a∈I(i,j)<br />

(iii) For f = (f a ) a∈I(i,j) ∈ Gr(X)((i, x), (j, y)) <strong>and</strong> g = (g b ) b∈I(j,k) ∈ Gr(X)((j, y), (k, z))<br />

g ◦ f := ( ∑ c=ba<br />

a∈I(i,j)<br />

b∈I(j,k)<br />

g b X(b)f a ) c∈I(i,k)<br />

Definiti<strong>on</strong> 7. Let C ∈ k-Cat 0 . Then <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al functor ∆(C) <str<strong>on</strong>g>of</str<strong>on</strong>g> C is a functor from I<br />

to k-Cat sending each arrow a: i → j in I to 1l C : C → C in k-Cat.<br />

In this secti<strong>on</strong>, we fix a k-algebra A which we regard as a k-category with a single<br />

object ∗ <strong>and</strong> with A(∗, ∗) = A. The quiver algebra AQ <str<strong>on</strong>g>of</str<strong>on</strong>g> Q over A is <str<strong>on</strong>g>the</str<strong>on</strong>g> A-linearizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> PQ, namely AQ := A ⊗ k kQ.<br />

Theorem 8. We have an isomorphism Gr(∆(A)) ∼ = AQ/〈R〉 A , where 〈R〉 A is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> AQ generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> elements g − h with (g, h) ∈ R.<br />

Remark 9. Theorem 8 can be written in <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

Gr(∆(A)) ∼ = A ⊗ k (kQ/〈R〉 k ).<br />

–18–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!