20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

(3) There is no cycles in <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying graph <str<strong>on</strong>g>of</str<strong>on</strong>g> Q apart from those induced by<br />

oriented cycles c<strong>on</strong>tained in neighborhoods <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices <str<strong>on</strong>g>of</str<strong>on</strong>g> Q.<br />

Let Q 1 = {Q ′ }, where Q ′ is <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver which has a single vertex <strong>and</strong> no arrows. It is<br />

shown in [9, Propositi<strong>on</strong> 2.4] that a quiver Γ is mutati<strong>on</strong> equivalent A n if <strong>and</strong> <strong>on</strong>ly if<br />

Γ ∈ Q n .<br />

In [9], Buan <strong>and</strong> Vatne proved <str<strong>on</strong>g>the</str<strong>on</strong>g> following (see also [3]):<br />

Propositi<strong>on</strong> 1 ([9, Propositi<strong>on</strong> 3.1]). The cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are exactly<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> algebras KQ/I, where Q ∈ Q n , <strong>and</strong><br />

(2.1) I = 〈p | p is a path <str<strong>on</strong>g>of</str<strong>on</strong>g> length 2, <strong>and</strong> <strong>on</strong> an oriented 3-cycle in Q〉<br />

As a c<strong>on</strong>sequence we see that cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are gentle algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> [2]:<br />

Corollary 2 ([9, Corollary 3.2]). The cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are gentle algebras.<br />

Green <strong>and</strong> Snashall [18] introduced (D, A)-stacked m<strong>on</strong>omial algebras by using <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> overlaps <str<strong>on</strong>g>of</str<strong>on</strong>g> paths, where D <strong>and</strong> A are positive integers with D ≥ 2 <strong>and</strong> A ≥ 1, <strong>and</strong><br />

gave generators <strong>and</strong> relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo nilpotence for<br />

(D, A)-stacked m<strong>on</strong>omial algebras completely. (In this note, we do not state <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> (D, A)-stacked algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> [18]; see for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir details [13, Secti<strong>on</strong> 1], [18,<br />

Secti<strong>on</strong> 3], or [23, Secti<strong>on</strong> 3].)<br />

It is known that (2, 1)-stacked m<strong>on</strong>omial algebras are precisely Koszul m<strong>on</strong>omial algebras<br />

(equivalently, quadratic m<strong>on</strong>omial algebras), <strong>and</strong> also (D, 1)-stacked m<strong>on</strong>omial<br />

algebras are exactly D-Koszul m<strong>on</strong>omial algebras (see [4]). By <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>, we directly<br />

see that all gentle algebras are (2, 1)-stacked m<strong>on</strong>omial algebras (see [13]). Hence, by<br />

Corollary 2, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Lemma 3. All cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are (2, 1)-stacked m<strong>on</strong>omial algebras, <strong>and</strong><br />

so are Koszul m<strong>on</strong>omial algebras.<br />

By Lemma 3, we can apply <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> [18] to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochshild cohomology rings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n . Applying [18, Theorem 3.4] with Propositi<strong>on</strong> 1, we<br />

have <str<strong>on</strong>g>the</str<strong>on</strong>g> following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem:<br />

Theorem 4. Let n be a positive integer, <strong>and</strong> let Λ = KQ/I be a cluster-tilted algebra<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> type A n , where Q ∈ Q n <strong>and</strong> I is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal given by (2.1). Suppose that char K ≠ 2.<br />

Moreover, let r be <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> oriented 3-cycles in Q. Then<br />

{<br />

HH ∗ K[x 1 , . . . , x r ]/〈x i x j | i ≠ j〉 if r > 0<br />

(Λ)/N Λ ≃<br />

K if r = 0,<br />

where deg x i = 6 for i = 1, . . . , r.<br />

Example 5. Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> following quiver with 17 vertices <strong>and</strong> five oriented 3-cycles:<br />

• ✷ ✷✷✷✷<br />

• ✷ ✷✷✷✷ •<br />

✷ ✷✷✷✷✷✷✷✷✷✷ • ✷ ✷✷✷✷<br />

☞<br />

• • ☞☞☞☞ • • ☞<br />

• ☞☞☞☞ • ☞<br />

• ☞☞☞☞ • <br />

☞<br />

• • ☞☞☞☞ •<br />

–45–<br />

☞<br />

• ✷ ☞☞☞☞<br />

✷✷✷✷<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!