20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

we have a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s R ⊕ k 2 ⇒ m ⊕ R/(xy) ⇒ (M µ ⊕ k) ⊕ (M λ ⊕ k) =<br />

M λ ⊕ M µ ⊕ k 2 . ✷<br />

(3) There is no sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s from R to M λ ⊕ M µ if λ + µ ≠ 0.<br />

(Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>) If <str<strong>on</strong>g>the</str<strong>on</strong>g>re are such degenerati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we have an inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fitting ideals;<br />

F R n (M λ ⊕ M µ ) ⊆ F R n (R) for all n. Note that F R 0 (R) = 0, <strong>and</strong><br />

F R 0 (M λ ⊕ M µ ) = F R 0 (M λ )F R 0 (M µ ) = (x − λy)(x − µy)R = (λ + µ)xyR.<br />

Hence we must have λ + µ = 0. ✷<br />

This example shows <str<strong>on</strong>g>the</str<strong>on</strong>g> cancellati<strong>on</strong> law does not hold for degenerati<strong>on</strong>.<br />

Example 22. Let R = k[[t]] be a formal power series ring over a field k with <strong>on</strong>e variable<br />

t <strong>and</strong> let M be an R-module <str<strong>on</strong>g>of</str<strong>on</strong>g> length n. It is easy to see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an isomorphism<br />

(2.2) M ∼ = R/(t p 1<br />

) ⊕ · · · ⊕ R/(t p n<br />

),<br />

where<br />

(2.3) p 1 ≥ p 2 ≥ · · · ≥ p n ≥ 0 <strong>and</strong><br />

In this case <str<strong>on</strong>g>the</str<strong>on</strong>g> ith Fitting ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> M is given as<br />

n∑<br />

p i = n.<br />

i=1<br />

F R i (M) = (t p i+1+···+p n<br />

) (i ≥ 0).<br />

We denote by p M <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence (p 1 , p 2 , · · · , p n ) <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-negative integers. Recall that such<br />

a sequence satisfying (2.3) is called a partiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n.<br />

C<strong>on</strong>versely, given a partiti<strong>on</strong> p = (p 1 , p 2 , · · · , p n ) <str<strong>on</strong>g>of</str<strong>on</strong>g> n, we can associate an R-module <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

length n by (2.2), which we denote by M(p). In such a way <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a <strong>on</strong>e-<strong>on</strong>e corresp<strong>on</strong>dence<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> length n.<br />

Let p = (p 1 , p 2 , · · · , p n ) <strong>and</strong> q = (q 1 , q 2 , · · · , q n ) be partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n. Then we denote<br />

p ≽ q if it satisfies ∑ j<br />

i=1 p i ≥ ∑ j<br />

i=1 q i for all 1 ≤ j ≤ n. This ≽ is known to be a partial<br />

order <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n <strong>and</strong> called <str<strong>on</strong>g>the</str<strong>on</strong>g> dominance order.<br />

Then we can show that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a degenerati<strong>on</strong> from M to N if <strong>and</strong> <strong>on</strong>ly if p M ≽ p N .<br />

3. Stable degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CM modules<br />

In this secti<strong>on</strong> we are interested in <str<strong>on</strong>g>the</str<strong>on</strong>g> stable analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-<br />

Macaulay modules over a commutative Gorenstein local ring. For this purpose, (R, m, k)<br />

always denotes a Gorenstein local ring which is a k-algebra, <strong>and</strong> V = k[t] (t) <strong>and</strong> K = k(t)<br />

where t is a variable. We note that R ⊗ k V <strong>and</strong> R ⊗ k K are Gorenstein as well as R <strong>and</strong><br />

we have <str<strong>on</strong>g>the</str<strong>on</strong>g> equality <str<strong>on</strong>g>of</str<strong>on</strong>g> Krull dimensi<strong>on</strong>;<br />

dim R ⊗ k V = dim R + 1, dim R ⊗ k K = dim R.<br />

If dim R = 0 (i.e. R is artinian), <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> rings R ⊗ k V <strong>and</strong> R ⊗ k K are local. However<br />

we should note that R ⊗ k V <strong>and</strong> R ⊗ k K will never be local rings if dim R > 0. Since<br />

R ⊗ k K is n<strong>on</strong>-local, <str<strong>on</strong>g>the</str<strong>on</strong>g>re may be a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> projective modules which are not free.<br />

–276–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!