20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

One can prove in a similar fashi<strong>on</strong> that for a selfinjective algebra, a comp<strong>on</strong>ent C c<strong>on</strong>tains<br />

a simple (projective) module, if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent ΩC c<strong>on</strong>tains a projective<br />

(respectively simple) module.<br />

Remark 11. Let C be an Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent having a boundary, that is, a<br />

comp<strong>on</strong>ent c<strong>on</strong>taining indecomposable modules whose Ausl<strong>and</strong>er-Reiten sequences have<br />

indecomposable middle terms. Assume that C is not a tube, <strong>and</strong> let C be an indecomposable<br />

module lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality we may assume<br />

that nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r C nor ΩC has a simple module in <str<strong>on</strong>g>the</str<strong>on</strong>g> positive directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir τ-orbit. This<br />

means that if 0 → τC → B → C → 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at C,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n both maps τC → B <strong>and</strong> B → C are Ω-perfect <strong>and</strong> so C is an Ω-perfect module. So<br />

we see that n<strong>on</strong>periodic comp<strong>on</strong>ents with boundaries, always c<strong>on</strong>tain Ω-perfect maps <strong>and</strong><br />

Ω-perfect modules. As we will see so<strong>on</strong>, this need not happen in comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> type<br />

ZA ∞ ∞.<br />

Lemma 12. Let g : B → C be an irreducible map that is not eventually Ω-perfect, where<br />

nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r B nor C has a n<strong>on</strong>zero projective summ<strong>and</strong>. Then, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a positive integer<br />

α such that for each i ≥ 0 we have |l(Ω i B) − l(Ω i C)| ≤ α.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. By taking enough powers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translate τ, we may assume<br />

without loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality that g is <strong>on</strong>to, <strong>and</strong> that its kernel S is a simple periodic module.<br />

Note that by applying Ω we obtain an induced exact sequence 0 → ΩB −→ Ωg<br />

ΩC → S → 0.<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> induced map Ω 2 g is again a m<strong>on</strong>omorphism, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we get <str<strong>on</strong>g>the</str<strong>on</strong>g> commutative exact<br />

diagram<br />

0<br />

0<br />

0<br />

0 Ω 2 B<br />

Ω 2 g Ω 2 C<br />

L<br />

0<br />

0 P ΩB<br />

0 ΩB<br />

Ωg<br />

P ΩC<br />

ΩC<br />

Q<br />

S<br />

0 0 0<br />

0<br />

0<br />

hence <str<strong>on</strong>g>the</str<strong>on</strong>g> two modules L <strong>and</strong> ΩS are isomorphic, <strong>and</strong> we have a short exact sequence<br />

0 → Ω 2 B → Ω 2 C → ΩS → 0. If <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> map Ω 2 g is an epimorphism,<br />

–81–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!