20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> associated QP (Q Λ , W Λ , C Λ ) <str<strong>on</strong>g>of</str<strong>on</strong>g> Λ <strong>and</strong> we put ˜µ k (Q Λ , W Λ ) = (Q ′ , W ′ ).<br />

Then W ′ is given by<br />

W ′ = [ ∑ ∑<br />

r r] + [ρ r a]a<br />

r∈Rρ ∗ ρ ∗ r,<br />

<strong>and</strong> it is easy to check that subset<br />

a∈Q 1 ,r∈R<br />

s(a)=k=s(r)<br />

C ′ = { ρ r | r ∈ R, s(r) ≠ k} ∐ { [ρ r a] | a ∈ Q 1 , r ∈ R, s(a) = k = s(r)}<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Q ′ is a cut <str<strong>on</strong>g>of</str<strong>on</strong>g> (Q ′ , W ′ ).<br />

Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Theorem 7. Let Λ = ̂KQ/〈R〉 be a finite dimensi<strong>on</strong>al algebra with a minimal set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

relati<strong>on</strong>s. Let T k := τ − P k ⊕ Λ/P k be <str<strong>on</strong>g>the</str<strong>on</strong>g> APR tilting module. Then if inj.dimP k ≤ 2, we<br />

have an algebra isomorphism<br />

End Λ (T k ) ∼ = P(˜µ k (Q Λ , W Λ ), C ′ ).<br />

Notice that <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> inj.dimP k ≤ 2 is automatic if gl.dimΛ = 2. Thus our<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem give a generalizati<strong>on</strong> from gl.dimΛ = 1 to gl.dimΛ = 2.<br />

Here we will explain <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> C ′ . In fact C ′ is naturally obtained by using graded<br />

mutati<strong>on</strong>s. For this purpose, we recall graded QPs, as introduced by [1].<br />

Graded quivers with potentials. Let (Q, W ) be a QP <strong>and</strong> we define a map d : Q 1 → Z.<br />

We call a QP (Q, W, d) Z-graded QP if each arrow a ∈ Q 1 has a degree d(a) ∈ Z, <strong>and</strong><br />

homogeneous <str<strong>on</strong>g>of</str<strong>on</strong>g> degree l if each term in W is a degree l.<br />

Definiti<strong>on</strong> 8. Let QP (Q, W, d) be a Z-graded QP <str<strong>on</strong>g>of</str<strong>on</strong>g> degree l. For each vertex k in Q<br />

not lying <strong>on</strong> a loop nor 2-cycle, we define a left mutati<strong>on</strong> µ L k (Q, W, d) as a reduced part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ L k (Q, W, d) = (Q′ , W ′ , d ′ ), where (Q ′ , W ′ , d ′ ) is given as follows.<br />

(1) (Q ′ , W ′ ) = ˜µ k (Q, W )<br />

(2) The new degree d ′ is defined as follows:<br />

• d ′ (a) = d(a) for each arrow a ∈ Q ∩ Q ′ .<br />

• d ′ (a ∗ ) = −d(a) for each arrow a : k → v in Q.<br />

• d ′ (b ∗ ) = −d(b) + l for each arrow b : u → k in Q.<br />

• d ′ ([ba]) = d(a) + d(b) for each pair <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows u → b k → a v in Q.<br />

In particular, ˜µ L k (Q, W, d) also has a potential <str<strong>on</strong>g>of</str<strong>on</strong>g> degree l. Similarly, we can define<br />

˜µ R k at k. In this case, we define d′ (b ∗ ) = −d(b) for each arrow b : u → k in Q <strong>and</strong><br />

d ′ (a ∗ ) = −d(a) + l for each arrow a : k → v in Q.<br />

If (Q, W ) has a cut C, we can identify <str<strong>on</strong>g>the</str<strong>on</strong>g> QP with a Z-graded QP <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 1 associating<br />

a grading <strong>on</strong> Q by<br />

{<br />

1 a ∈ C<br />

d C (a) =<br />

0 a ∉ C.<br />

We denote by (Q, W, C) <str<strong>on</strong>g>the</str<strong>on</strong>g> graded QP <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 1 with this grading. If any arrow <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

˜µ L k (Q, W, C) has degree 0 or 1, degree 1 arrows give a cut <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ k(Q, W ) since ˜µ L k (Q, W, C)<br />

is homogeneous <str<strong>on</strong>g>of</str<strong>on</strong>g> degree 1. Therefore a cut <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜µ k (Q Λ , W Λ ) is naturally induced as degree<br />

–117–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!