20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

linear code defined by η; <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced length l 0 (η) equals <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> linear code<br />

defined by η after any all-zero positi<strong>on</strong>s have been removed. (In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a generator<br />

matrix, <strong>on</strong>e removes all <str<strong>on</strong>g>the</str<strong>on</strong>g> zero columns.)<br />

Assume <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property holds with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight. This means<br />

that if η, η ′ ∈ F (O ♯ , N) satisfy l(η) = l(η ′ ) <strong>and</strong> W η = W η ′, <str<strong>on</strong>g>the</str<strong>on</strong>g>n η = η ′ . That is, W is<br />

injective al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> level sets <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> length functi<strong>on</strong> l. If l(η ′ ) < l(η) <strong>and</strong> W η = W η ′, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

we can append zeros to η ′ until its length is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as l(η) without changing W η ′. More<br />

precisely, define η ′′ by η ′′ (λ) = η ′ (λ) for λ ≠ 0 <strong>and</strong> set η ′′ (0) = η ′ (0) + l(η) − l(η ′ ). Then<br />

l(η ′′ ) = l(η) <strong>and</strong> W η ′′ = W η . Then η ′′ = η, by <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reduced lengths are equal: l 0 (η) = l 0 (η ′ ) = l 0 (η ′′ ).<br />

There is a projecti<strong>on</strong> pr : F (O ♯ , N) → F 0 (O ♯ , N) which sets (pr η)(0) = 0 <strong>and</strong> leaves<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r values unchanged, (pr η)(λ) = η(λ), λ ≠ 0. This projecti<strong>on</strong> splits <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>oid<br />

as F (O ♯ , N) = F 0 (O ♯ , N) ⊕ N. The argument <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> previous paragraph shows that if<br />

W η = W η ′, <str<strong>on</strong>g>the</str<strong>on</strong>g>n pr η = pr η ′ as elements <str<strong>on</strong>g>of</str<strong>on</strong>g> F 0 (O ♯ , N).<br />

C<strong>on</strong>versely, suppose W : F 0 (O ♯ , N) → F 0 (O, N) is injective. Let η, η ′ ∈ F (O ♯ , N) satisfy<br />

l(η) = l(η ′ ) <strong>and</strong> W η = W η ′. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> η(0) does not affect W η , we see that<br />

W pr η = W pr η ′. By assumpti<strong>on</strong>, W is injective <strong>on</strong> F 0 (O ♯ , N), so that pr η = pr η ′ . In<br />

particular, l 0 (η) = l 0 (η ′ ). Since l(η) = l(η ′ ), we must also have η(0) = η ′ (0), <strong>and</strong> thus<br />

η = η ′ .<br />

6. Self-Dual Codes<br />

I want to finish this article by touching <strong>on</strong> a very active research topic: self-dual codes.<br />

As we saw in subsecti<strong>on</strong> 3.3, if C ⊂ F n is a linear code <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over a finite field F,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n its dual code C ⊥ is defined by C ⊥ = {y ∈ F n : x · y = 0, x ∈ C}. A linear code C<br />

is self-orthog<strong>on</strong>al if C ⊂ C ⊥ <strong>and</strong> is self-dual if C = C ⊥ . Because dim C ⊥ = n − dim C,<br />

a necessary c<strong>on</strong>diti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-dual code C over a finite field is that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

length n must be even; <str<strong>on</strong>g>the</str<strong>on</strong>g>n dim C = n/2.<br />

The Hamming weight enumerator <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-dual code appears <strong>on</strong> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

MacWilliams identities:<br />

W C (X, Y ) = 1<br />

|C| W C(X + (q − 1)Y, X − Y ),<br />

where C is self-dual over F q . As |C| = q n/2 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> total degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial<br />

W C (X, Y ) is n, <str<strong>on</strong>g>the</str<strong>on</strong>g> MacWilliams identities for a self-dual code can be written in <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

W C (X, Y ) = W C<br />

( X + (q − 1)Y<br />

√ q<br />

, X √ − Y )<br />

. q<br />

Every element x <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-dual code satisfies x · x = 0. In <str<strong>on</strong>g>the</str<strong>on</strong>g> binary case, q = 2, notice<br />

that x · x ≡ wt(x) mod 2. Thus, every element <str<strong>on</strong>g>of</str<strong>on</strong>g> a binary self-dual code C has even<br />

length. This implies that W C (X, −Y ) = W C (X, Y ).<br />

Restrict to <str<strong>on</strong>g>the</str<strong>on</strong>g> binary case, q = 2. Define two complex 2 × 2 matrices P, Q by<br />

P =<br />

(<br />

1/<br />

√<br />

2 1/<br />

√<br />

2<br />

1/ √ 2 −1/ √ 2<br />

–242–<br />

)<br />

, Q =<br />

(<br />

1 0<br />

0 −1<br />

)<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!