20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem. In Secti<strong>on</strong> 5, we will characterize local noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite selfinjective<br />

dimensi<strong>on</strong>. Also, we will provide several examples showing what rich properties<br />

local noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> finite selfinjective dimensi<strong>on</strong> enjoy.<br />

2. Full embedding<br />

Let G A /P A be <str<strong>on</strong>g>the</str<strong>on</strong>g> residue category <str<strong>on</strong>g>of</str<strong>on</strong>g> G A over <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory P A <strong>and</strong><br />

D b (mod-A) fGd /D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) fGd over <str<strong>on</strong>g>the</str<strong>on</strong>g> épaisse<br />

subcategory D b (mod-A) fpd . Then, as Avramov [3] announced, <str<strong>on</strong>g>the</str<strong>on</strong>g> embedding G A →<br />

D b (mod-A) fGd gives rise to an equivalence<br />

In this secti<strong>on</strong>, we will extend this fact.<br />

G A /P A ∼ → D b (mod-A) fGd /D b (mod-A) fpd .<br />

Definiti<strong>on</strong> 7. We denote by ĜA <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modules X ∈ mod-A with Ext i A(X, A) = 0 for i ≠ 0.<br />

We denote by ĜA/P A <str<strong>on</strong>g>the</str<strong>on</strong>g> residue category <str<strong>on</strong>g>of</str<strong>on</strong>g> ĜA over <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory P A<br />

<strong>and</strong> by D b (mod-A)/D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient category <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) over <str<strong>on</strong>g>the</str<strong>on</strong>g> épaisse<br />

subcategory D b (mod-A) fpd . Also, we denote by D b (mod-A) bdh /D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) bdh over <str<strong>on</strong>g>the</str<strong>on</strong>g> épaisse subcategory D b (mod-A) fpd .<br />

Propositi<strong>on</strong> 8. The embedding ĜA → D b (mod-A) bdh gives rise to a full embedding<br />

F : ĜA/P A → D b (mod-A) bdh /D b (mod-A) fpd .<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>, we will characterize a complex X • ∈ D b (mod-A) bdh which admits<br />

a homomorphism Z[m] → X • in D b ∼<br />

(mod-A) bdh inducing an isomorphism Z[m] −→ X •<br />

in D b (mod-A) bdh /D b (mod-A) fpd for some Z ∈ ĜA <strong>and</strong> m ∈ Z. Such a complex does not<br />

necessarily bel<strong>on</strong>g to D b (mod-A) fGd . Namely, Ĝ A ≠ G A in general (see Propositi<strong>on</strong> 15<br />

below), which has been pointed out by J.-I. Miyachi in oral communicati<strong>on</strong>.<br />

Example 9 (Miyachi). Let k be a field <strong>and</strong> fix a n<strong>on</strong>zero element c ∈ k which is not<br />

a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity. Let S = k < x, y > be a n<strong>on</strong>-commutative polynomial ring <strong>and</strong> I =<br />

(x 2 , y 2 , cxy + yx) a two-sided ideal generated by x 2 , y 2 <strong>and</strong> cxy + yx. Set R = S/I,<br />

z n = x + c n y + I ∈ R for n ∈ Z <strong>and</strong> w = xy + I ∈ R. Then R is a selfinjective algebra <strong>and</strong><br />

for each n ∈ Z <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist exact sequences R z n+1<br />

−−→ R z n<br />

−→ R in mod-R <strong>and</strong> R z n<br />

−→ R z n+1<br />

−−→ R<br />

in mod-R op . Since c is not a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, z n R ≁ = zm R <strong>and</strong> Hom R (z n R, z m R) ∼ = k unless<br />

n = m. Thus, since we have a projective resoluti<strong>on</strong> · · · → R z 3<br />

−→ R z 2<br />

−→ R z 1<br />

−→ z 1 R → 0 in<br />

mod-R, applying Hom R (−, z 0 R) we have Ext i R(z 1 R, z 0 R) = 0 for all i ≥ 1 (see [14]).<br />

Now, we set<br />

A =<br />

( )<br />

k z0 R<br />

0 R<br />

<strong>and</strong> e 1 =<br />

( )<br />

1 0<br />

, e<br />

0 0 2 =<br />

( )<br />

0 0<br />

∈ A.<br />

0 1<br />

Then a module X ∈ mod-A is given by a triple (X 1 , X 2 ; φ) <str<strong>on</strong>g>of</str<strong>on</strong>g> X 1 ∈ mod-k, X 2 ∈ mod-R<br />

<strong>and</strong> φ ∈ Hom R (X 1 ⊗ k z 0 R, X 2 ), <strong>and</strong> a module M ∈ mod-A op is given by a triple<br />

(M 1 , M 2 ; ψ) <str<strong>on</strong>g>of</str<strong>on</strong>g> M 1 ∈ mod-k, M 2 ∈ mod-R op <strong>and</strong> ψ ∈ Hom k (z 0 R ⊗ R M 2 , M 1 ) (see [7]).<br />

z<br />

Set X = (0, z 1 R; 0) ∈ mod-A. Since we have a projective resoluti<strong>on</strong> · · · −→<br />

3<br />

e2 A z 2<br />

−→<br />

–71–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!