20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>of</str<strong>on</strong>g> basic sincere hom-orthog<strong>on</strong>al tilting KQ-modules having s pairwise n<strong>on</strong>-isomorphic indecomposables<br />

is given explicitely by <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

a 0 (n − 1)!<br />

(n, s) =<br />

s! (s − 1)! (n + 1 − 2s)! = C s−1 · ( )<br />

n−1<br />

(0.3)<br />

2s−2<br />

if 1 ≤ s ≤ (n + 1)/2, <strong>and</strong> a 0 (n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

d 0 (n, s) =<br />

(n − 2)!<br />

s! (s − 1)! (n + 2 − 2s)!<br />

× { n(n − 1 − 2s)(n − 2s) + 2n(n − 2) + (s − 1)(s 2 − 9s + 4) }<br />

if 1 ≤ s ≤ (n + 2)/2, <strong>and</strong> d 0 (n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> e 0 (n, s) for 1 ≤ s ≤<br />

(n + 1)/2 are given in Table 0.1, <strong>and</strong> we have e 0 (n, s) = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

Now we will excepti<strong>on</strong>ally define some values <str<strong>on</strong>g>of</str<strong>on</strong>g> a(m, t) for simplicity:<br />

a(m, −1) = 0, a(m, 0) = 1, <strong>and</strong> a(l, t) = 0 for l ≤ 0 <strong>and</strong> t ≠ 0.<br />

Then we can express d(n, s), a 0 (n, s), <strong>and</strong> d 0 (n, s) as <str<strong>on</strong>g>the</str<strong>on</strong>g> following simpler forms:<br />

(0.4)<br />

(0.5)<br />

d(n, s) = (n − 1) · a(n − 3, s − 2) + (s + 1) · a(n − 1, s),<br />

a 0 (n, s) = a(n − 2, s − 1),<br />

d 0 (n, s) = (s − 1) · a(n − 3, s − 2) + (n − 2) · a(n − 3, s − 1).<br />

As will be menti<strong>on</strong>ed in §1, <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers presented in Theorems 0.1 <strong>and</strong> 0.3 are independent<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. Thus we may assume that its<br />

arrows are c<strong>on</strong>veniently oriented.<br />

1. Preliminaries<br />

Let Q be a Dynkin quiver having n vertices, Λ = KQ its path algebra. For an indecomposable<br />

Λ-module M, its right perpendicular category M ⊥ is defined by<br />

M ⊥ = {X ∈ mod Λ; Hom Λ (M, X) = 0 <strong>and</strong> Ext 1 Λ(M, X) = 0}.<br />

The left perpendicular category ⊥ M is also defined similarly. To investigate hom-orthog<strong>on</strong>al<br />

partial tilting modules (or, regular PVs), we are interested in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir intersecti<strong>on</strong> Per M =<br />

⊥ M ∩ M ⊥ ; we will simply call it <str<strong>on</strong>g>the</str<strong>on</strong>g> perpendicular category <str<strong>on</strong>g>of</str<strong>on</strong>g> M. Now we recall <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>Ring</strong>el form, which is defied <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gro<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck group K 0 (Λ) ∼ = Z n :<br />

〈dim X, dim Y 〉 = dim Hom Λ (X, Y ) − dim Ext 1 Λ(X, Y )<br />

= t (dim X) · R Q · (dim Y )<br />

for X, Y ∈ mod Λ, where R Q = (r ij ) i,j∈Q0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> matrix with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

basis e 1 , e 2 , . . . , e n <str<strong>on</strong>g>of</str<strong>on</strong>g> K 0 (Λ) ∼ = Z n (here we put e k = dim S(k), which is <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong><br />

vector <str<strong>on</strong>g>of</str<strong>on</strong>g> a simple module corresp<strong>on</strong>ding to a vertex k ∈ Q 0 ). This is defined as r ii = 1<br />

for all i ∈ Q 0 ; r ij = −1 if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an arrow i → j in Q; <strong>and</strong> r ij = 0 if o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise.<br />

Lemma 1.1. For indecomposable Λ-modules X <strong>and</strong> Y , we have 〈dim X, dim Y 〉 = 0 if<br />

<strong>and</strong> <strong>on</strong>ly if Hom Λ (X, Y ) = 0 <strong>and</strong> Ext 1 Λ(X, Y ) = 0.<br />

–127–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!