20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Theorem 26. Let R be a local artinian ring, <strong>and</strong> let M be a finitely generated n<strong>on</strong> free<br />

R-module. Then, for each i ≥ 1 we have<br />

l(R)β i (M) > β i+1 (M) > l(socR) β i (M)<br />

l(R)<br />

Observe that if we assume in <str<strong>on</strong>g>the</str<strong>on</strong>g> last <str<strong>on</strong>g>the</str<strong>on</strong>g>orem that R is also selfinjective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n its socle<br />

has length equal to 1, so we d<strong>on</strong>’t get any extremely useful informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Betti numbers.<br />

It turns out that in certain cases we can prove a similar <str<strong>on</strong>g>the</str<strong>on</strong>g>orem to Ramras’ first<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>orem. For this type <str<strong>on</strong>g>of</str<strong>on</strong>g> result we might restrict ourselves <strong>on</strong>ly to <str<strong>on</strong>g>the</str<strong>on</strong>g> local selfinjective<br />

case R = (R, m, k) but this is not necessary. Recall that since R is selfinjective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

for each integer n ≥ 0 we have that β i (τM) = β i+2 (M) if M is an indecomposable n<strong>on</strong><br />

projective R-module. We will assume that cx M > 1. Next we want to make sure that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> M c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> modules that are eventually Ω-perfect. As menti<strong>on</strong>ed<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong>, this can be easily achieved if we assume that every simple R-module<br />

is n<strong>on</strong> periodic (cx k > 1 for <str<strong>on</strong>g>the</str<strong>on</strong>g> local case) by [18].<br />

We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Lemma 27. Let R be a selfinjective algebra <strong>and</strong> let M be a finitely generated n<strong>on</strong> projective<br />

indecomposable R-module. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten<br />

quiver c<strong>on</strong>taining M is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZA ∞ ∞ <strong>and</strong> that it c<strong>on</strong>sists entirely <str<strong>on</strong>g>of</str<strong>on</strong>g> eventually Ω-<br />

perfect modules. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> sequences {β 2n (M)} n <strong>and</strong> {β 2n+1 (M)} n are eventually strictly<br />

increasing.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let M be a module in this comp<strong>on</strong>ent. We may assume that M is Ω-perfect by<br />

taking enough powers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Ausl<strong>and</strong>er-Reiten translate. The Ausl<strong>and</strong>er-Reiten sequence<br />

ending at M must have <str<strong>on</strong>g>the</str<strong>on</strong>g> following form [18, 20]<br />

X ■ ■ <br />

τM M<br />

<br />

❑❑❑❑❑ ✉<br />

Y<br />

✉✉✉<br />

so we have an epimorphism τM → M that is <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two Ω-perfect epimorphisms.<br />

But we can infer from 4 that whenever we have an Ω-perfect epimorphism<br />

f : B → C, <str<strong>on</strong>g>the</str<strong>on</strong>g>n for each i we have β i (B) > β i (C) since β i (Kerf) > 0. This implies that<br />

β i+2 (M) = β i (τM) > β i (X) > β i (M) for all i ≥ 0 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> result follows.<br />

□<br />

We now treat <str<strong>on</strong>g>the</str<strong>on</strong>g> D ∞ case.<br />

Lemma 28. Let R be a selfinjective algebra. Let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-<br />

Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZD ∞ c<strong>on</strong>sisting entirely <str<strong>on</strong>g>of</str<strong>on</strong>g> eventually Ω-perfect modules.<br />

(1) Let M be a module in C s not lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> border <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent. Then <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sequences {β 2n (M)} n <strong>and</strong> {β 2n+1 (M)} n are eventually strictly increasing.<br />

(2) Let Y <strong>and</strong> Z be two indecomposable modules in C s lying in <str<strong>on</strong>g>the</str<strong>on</strong>g> two different τ-<br />

orbits that form <str<strong>on</strong>g>the</str<strong>on</strong>g> border <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> sequences {β 2n (Y ⊕ Z)} n<br />

<strong>and</strong> {β 2n+1 (Y ⊕ Z)} n are eventually strictly increasing.<br />

–88–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!