20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(3) j ∗ i ∗ = 0;<br />

(4) for every object M <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A) <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two triangles<br />

<strong>and</strong><br />

i ! i ! M M j ∗ j ∗ M Σi ! i ! M<br />

j ! j ! M M i ∗ i ∗ M Σj ! j ! M ,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> four morphisms starting from <strong>and</strong> ending at M are <str<strong>on</strong>g>the</str<strong>on</strong>g> units <strong>and</strong> counits.<br />

This type <str<strong>on</strong>g>of</str<strong>on</strong>g> recollements attracts c<strong>on</strong>siderable attenti<strong>on</strong>, see for example [6, 8, 7, 14]. The<br />

c<strong>on</strong>diti<strong>on</strong>s (1) <strong>and</strong> (3) are easy to check, <strong>and</strong> it is known that (2r) holds (by applying [11,<br />

Propositi<strong>on</strong> 3.2] to eA). However, in general (2l) is not necessarily true, as seen from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

next example.<br />

Example 1. Let A be <str<strong>on</strong>g>the</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebra given by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

1<br />

α<br />

β<br />

2<br />

with relati<strong>on</strong> αβ = 0. Take <str<strong>on</strong>g>the</str<strong>on</strong>g> idempotent e = e 1 , <str<strong>on</strong>g>the</str<strong>on</strong>g> trivial path at <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex 1. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> associated functor i ∗ : D(A/AeA) → D(A) is not fully faithful. Indeed, i ∗ (A/AeA)<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> simple A-module at vertex 2, which has n<strong>on</strong>-vanishing self-extensi<strong>on</strong>s in degree 2,<br />

while as an A/AeA-module A/AeA has no self-extensi<strong>on</strong>s.<br />

Theorem 2. ([8]) The following c<strong>on</strong>diti<strong>on</strong>s are equivalent<br />

(i) <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard diagram (1.1) is a recollement,<br />

(ii) <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism A → A/AeA is a homological epimorphism, i.e.<br />

i ∗ : D(A/AeA) → D(A) is fully faithful,<br />

(iii) <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal AeA is a stratifying ideal, i.e.<br />

isomorphism Ae L ⊗ eAe eA ∼ = AeA.<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> functor<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> counit Ae L ⊗ eAe eA → A induces an<br />

In general, to make <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard diagram (1.1) a recollement, <strong>on</strong>e needs to replace<br />

A/AeA by a dg (=differential graded) algebra, which, in some sense, enhances A/AeA.<br />

For dg algebras <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir derived categories, we refer to [13]. We remark that a k-algebra<br />

can be viewed as a dg k-algebra c<strong>on</strong>centrated in degree 0.<br />

Theorem 3. ([12]) Let A <strong>and</strong> e ∈ A be as above. There is a dg k-algebra B with a<br />

homomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> dg algebras f : A → B <strong>and</strong> a recollement <str<strong>on</strong>g>of</str<strong>on</strong>g> derived categories<br />

i ∗<br />

D(B) i ∗ =i !<br />

D(A) j ! =j ∗ D(eAe) ,<br />

j !<br />

i !<br />

j ∗<br />

such that<br />

–263–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!