20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Corollary 7 ([16, Theorem 3.4]). The ideal Ĩ is a polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> I.<br />

The next result also follows from [13, Lemma 6.9].<br />

Corollary 8. ˜P • ⊗ ˜S<br />

˜S/(Θ) is a minimal S-free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S/I.<br />

Remark 9. (1) The corresp<strong>on</strong>dence between <str<strong>on</strong>g>the</str<strong>on</strong>g> admissible pairs for I <strong>and</strong> those for Ĩ,<br />

does not give a chain map between <str<strong>on</strong>g>the</str<strong>on</strong>g> Eliahou-Kervaire resoluti<strong>on</strong> <strong>and</strong> our ˜P • ⊗ ˜S<br />

˜S/(Θ).<br />

In this sense, two resoluti<strong>on</strong>s are not <str<strong>on</strong>g>the</str<strong>on</strong>g> same. See Example 21 below.<br />

(2) The lcm lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> I <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ are not isomorphic in general. Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lcm-lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> a m<strong>on</strong>omial ideal J is <str<strong>on</strong>g>the</str<strong>on</strong>g> set LCM(J) := { lcm{ m | m ∈ σ } | σ ⊂ G(J) }<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> order given by divisibility. Clearly, LCM(J) is a lattice. For <str<strong>on</strong>g>the</str<strong>on</strong>g> Borel fixed ideal<br />

I = (x 2 , xy, xz, y 2 , yz), we have xy ∨ xz = xy ∨ yz = xz ∨ yz = xyz in LCM(I). However,<br />

˜xy ∨ ˜xz = x 1 y 2 z 2 , ˜xy ∨ ỹz = x 1 y 1 y 2 z 2 <strong>and</strong> ˜xz ∨ ỹz = x 1 y 1 z 2 are all distinct in LCM(Ĩ) .<br />

(3) Eliahou <strong>and</strong> Kervaire ([7]) c<strong>on</strong>structed minimal free resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stable m<strong>on</strong>omial<br />

ideals, which form a wider class than Borel fixed ideals. However, b-pol(J) is not a<br />

polarizati<strong>on</strong> for a stable m<strong>on</strong>omial ideal J in general, <strong>and</strong> our c<strong>on</strong>structi<strong>on</strong> does not<br />

work.<br />

Let a = {a 0 , a 1 , a 2 , . . . } be a n<strong>on</strong>-decreasing sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-negative integers with<br />

a 0 = 0, <strong>and</strong> T = k[x 1 , . . . , x N ] a polynomial ring with N ≫ 0. In his paper [12],<br />

Murai defined an operator (−) γ(a) acting <strong>on</strong> m<strong>on</strong>omials <strong>and</strong> m<strong>on</strong>omial ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> S. For a<br />

m<strong>on</strong>omial m ∈ S with <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> m = ∏ e<br />

i=1 x α i<br />

as (1.1), set<br />

e∏<br />

m γ(a) := x αi +a i−1<br />

∈ T,<br />

<strong>and</strong> for a m<strong>on</strong>omial ideal I ⊂ S,<br />

i=1<br />

I γ(a) := (m γ(a) | m ∈ G(I)) ⊂ T.<br />

If a i+1 > a i for all i, <str<strong>on</strong>g>the</str<strong>on</strong>g>n I γ(a) is a squarefree m<strong>on</strong>omial ideal. Particularly in <str<strong>on</strong>g>the</str<strong>on</strong>g> case<br />

a i = i for all i, (−) γ(a) is just (−) sq menti<strong>on</strong>ed in Introducti<strong>on</strong>.<br />

The operator (−) γ(a) also can be described by b-pol(−) as is shown in [16]. Let L a be<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> k-subspace <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜S spanned by {x i,j − x i ′ ,j ′ | i + a j−1 = i ′ + a j ′ −1}, <strong>and</strong> Θ a a basis <str<strong>on</strong>g>of</str<strong>on</strong>g> L a .<br />

For example, we can take {x i,j − x i+1,j−1 | 1 ≤ i < n, 1 < j ≤ d} as Θ a in <str<strong>on</strong>g>the</str<strong>on</strong>g> case a i = i<br />

for all i. With a suitable choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number N, <str<strong>on</strong>g>the</str<strong>on</strong>g> ring homomorphism ˜S → T with<br />

x i,j ↦→ x i+aj−1 induces <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism ˜S/(Θ a ) ∼ = T .<br />

Propositi<strong>on</strong> 10 ([16, Propositi<strong>on</strong> 4,1]). With <str<strong>on</strong>g>the</str<strong>on</strong>g> above notati<strong>on</strong>, Θ a forms an ˜S/Ĩregular<br />

sequence, <strong>and</strong> we have ( ˜S/(Θ a )) ⊗ ˜S<br />

( ˜S/Ĩ) ∼ = T/I γ(a) .<br />

Applying Propositi<strong>on</strong> 10 <strong>and</strong> [5, Propositi<strong>on</strong> 1.1.5], we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Corollary 11. The complex ˜P • ⊗ ˜S<br />

˜S/(Θa ) is a minimal T -free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T/I γ(a) . In<br />

particular, a minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T/I sq is given in this way.<br />

For a Borel fixed ideal I generated in <strong>on</strong>e degree, Nagel <strong>and</strong> Reiner [13] c<strong>on</strong>structed a<br />

CW complex, which supports a minimal free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ĩ (or I, Isq ).<br />

–148–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!