20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> two indecomposable kD 4q -modules is<br />

not known, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than in some very special cases. One example is <str<strong>on</strong>g>the</str<strong>on</strong>g> work <str<strong>on</strong>g>of</str<strong>on</strong>g> Bessenrodt<br />

[3], classifying <str<strong>on</strong>g>the</str<strong>on</strong>g> endotrivial kD 4q -modules, thus determining <str<strong>on</strong>g>the</str<strong>on</strong>g> kD 4q -modules M for<br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> M with its dual M ∗ is <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> a trivial <strong>and</strong> a<br />

projective module.<br />

In recent work [5], we have c<strong>on</strong>tinued <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g> kD 4q -modules, determining<br />

completely <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> any two indecomposable<br />

kD 4q -modules. This provides an additi<strong>on</strong>al piece <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> towards <str<strong>on</strong>g>the</str<strong>on</strong>g> underst<strong>and</strong>ing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green rings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups, <strong>and</strong> gives certain bounds <strong>on</strong> which modules<br />

can occur as direct summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product. In particular, it determines precisely<br />

when a tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> two modules has a projective direct summ<strong>and</strong>.<br />

The Loewy length l(M) <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M is, by definiti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

radical series <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> socle series <str<strong>on</strong>g>of</str<strong>on</strong>g> M, that is, l(M) = min{t ∈ N | rad t (kD 4q )M = 0}.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>, we recall <strong>Ring</strong>el’s classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable kD 4q -modules.<br />

Secti<strong>on</strong> 3 gives a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results in [5], <strong>and</strong> in Secti<strong>on</strong> 4, we give examples illuminating<br />

our results <strong>and</strong> showing how <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be used to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum<br />

decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product in certain cases.<br />

2. The indecomposable modules <str<strong>on</strong>g>of</str<strong>on</strong>g> dihedral 2-groups<br />

Let q be a 2-power, <strong>and</strong> write D 4q = 〈x, y | x 2 = y 2 = 1, (xy) q = (yx) q 〉 for <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral<br />

group <str<strong>on</strong>g>of</str<strong>on</strong>g> order 4q. There is an isomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras<br />

kD 4q ˜→ Λ q :=<br />

k〈X, Y 〉<br />

(X 2 , Y 2 , (XY ) q − (Y X) q ) ,<br />

given by x ↦→ 1 + X <strong>and</strong> y ↦→ 1 + Y . Setting ∆(X) = 1 ⊗ X + X ⊗ 1 + X ⊗ X <strong>and</strong><br />

∆(Y ) = 1 ⊗ Y + Y ⊗ 1 + Y ⊗ Y defines a coproduct <strong>on</strong> Λ q corresp<strong>on</strong>ding under this<br />

isomorphism to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hopf algebra structure <str<strong>on</strong>g>of</str<strong>on</strong>g> kD 4q . Owing to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that Λ q is a special<br />

biserial algebra, its n<strong>on</strong>-projective modules split into two classes, known as string modules<br />

<strong>and</strong> b<strong>and</strong> modules. We describe both classes <str<strong>on</strong>g>of</str<strong>on</strong>g> modules below.<br />

Let ¯W be <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> words in letters a, b <strong>and</strong> inverse letters a −1 , b −1 such that a or a −1<br />

are always followed by b or b −1 <strong>and</strong> b or b −1 are always followed by a or a −1 . A directed<br />

subword <str<strong>on</strong>g>of</str<strong>on</strong>g> a word w ∈ ¯W is a word w ′ in ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> letters {a, b} or {a −1 , b −1 } such that<br />

w = w 1 w ′ w 2 for some words w 1 , w 2 ∈ ¯W. Let W be <str<strong>on</strong>g>the</str<strong>on</strong>g> subset <str<strong>on</strong>g>of</str<strong>on</strong>g> ¯W c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> words<br />

in which all directed subwords are <str<strong>on</strong>g>of</str<strong>on</strong>g> length strictly less than 2q. Define an equivalence<br />

relati<strong>on</strong> ∼ 1 <strong>on</strong> W by w ∼ 1 w ′ if, <strong>and</strong> <strong>on</strong>ly if, w ′ = w or w ′ = w −1 . Given w = l 1 . . . l n ∈ W,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> string module determined by w, denoted by M(w), is <str<strong>on</strong>g>the</str<strong>on</strong>g> n + 1-dimensi<strong>on</strong>al module<br />

with basis e 0 , . . . , e n <strong>and</strong> Λ q -acti<strong>on</strong> given by <str<strong>on</strong>g>the</str<strong>on</strong>g> following schema:<br />

l 1<br />

l<br />

ke 0<br />

ke 1<br />

2<br />

ke 2 . . .<br />

l n−1<br />

l<br />

ke n−1<br />

n<br />

ke n .<br />

If l i ∈ {a −1 , b −1 }, <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding arrow should be interpreted as going in <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite<br />

directi<strong>on</strong>, from ke i−1 to ke i , <strong>and</strong> having <str<strong>on</strong>g>the</str<strong>on</strong>g> label l −1<br />

i . Now X maps e i to e j (j ∈ {i −<br />

1, i + 1}) if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an arrow ke a i → ke j , <strong>and</strong> as zero if no arrow labelled with a starting<br />

in ke i exists. Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Y is given by arrows labelled with b. Two modules<br />

M(w) <strong>and</strong> M(w ′ ), w, w ′ ∈ W, are isomorphic if, <strong>and</strong> <strong>on</strong>ly if, w ∼ 1 w ′ .<br />

–24–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!