20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The next <str<strong>on</strong>g>the</str<strong>on</strong>g>orem is a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> previous three lemmas.<br />

Theorem 7. The following hold.<br />

(1) H 0 (T • ) is a tilting module in mod-A/a.<br />

(2) H −1 (νT • ) is a cotilting module in mod-A/a ′ , i.e., D(H −1 (νT • )) is a tilting module<br />

in mod-(A/a ′ ) op .<br />

We determine <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> H 0 (T • ). Set B = End K(A) (T • ). Since<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a surjective algebra homomorphism<br />

θ : B → End A/a (H 0 (T • )),<br />

which is induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> functor H 0 (−), we have an algebra isomorphism<br />

End A/a (H 0 (T • )) ∼ = B/Ker θ.<br />

Also, we can prove that Ker θ = ann B (Hom K(A) (A, T • )) = ann B (H 0 (T • )). Thus, we have<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> next <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 8. We have <str<strong>on</strong>g>the</str<strong>on</strong>g> following algebra isomorphisms.<br />

(1) End A/a (H 0 (T • )) ∼ = B/b, where b = ann B (H 0 (T • )).<br />

(2) End A/a ′(H −1 (νT • )) ∼ = B/b ′ , where b ′ = ann B (H −1 (νT • )).<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> final <str<strong>on</strong>g>of</str<strong>on</strong>g> this note, we dem<strong>on</strong>strate our results through an example.<br />

Example 9. Let A be <str<strong>on</strong>g>the</str<strong>on</strong>g> path algebra defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver<br />

2 ❂ ❂❂❂❂❂❂<br />

α<br />

γ<br />

✁ ✁✁✁✁✁✁<br />

1 ❂ 4<br />

❂ ❂❂❂❂❂<br />

β<br />

3<br />

✁ ✁✁✁✁✁✁ δ<br />

with relati<strong>on</strong>s αγ = βδ = 0. We denote by e i <str<strong>on</strong>g>the</str<strong>on</strong>g> empty path corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex<br />

i = 1, · · · , 4. The Ausl<strong>and</strong>er–Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> A is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

2<br />

4<br />

3<br />

1<br />

❄ ❄❄❄❄❄<br />

❄ ❄❄❄❄❄ 2 ❄ ❄❄❄❄❄❄<br />

8 888888 8 88888 8 88888<br />

4❄ 2 3<br />

1<br />

❄❄❄❄❄❄ 4 ❄ 2 3<br />

1<br />

❄❄❄❄❄ ❄ ❄❄❄❄❄<br />

3 8 88888 8 88888<br />

4<br />

2<br />

1 8 888888<br />

3<br />

where each indecomposable module is represented by its compositi<strong>on</strong> factors. It is not<br />

difficult to see that <str<strong>on</strong>g>the</str<strong>on</strong>g> following pair gives a stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for mod-A:<br />

T = { 1<br />

2 3 , 1 2 , 1 3 , 1 } <strong>and</strong> F = { 4 , 2 4 , 3 4 , 2 3<br />

4 , 3 , 2 },<br />

where T is a torsi<strong>on</strong> class <strong>and</strong> F is a torsi<strong>on</strong>-free class. We set<br />

X = 1<br />

2 3 , Y = 2 3<br />

4 ⊕ 3 ⊕ 2 .<br />

–3–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!