20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Theorem 9. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is not a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, HH ∗ (A q ) is not a finitely generated<br />

k-algebra.<br />

Theorem 10. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is not a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity, HH ∗ (A q )/N ∼ = k.<br />

There exists an example <str<strong>on</strong>g>of</str<strong>on</strong>g> our algebra A q which is not self-injective, m<strong>on</strong>omial or Koszul.<br />

Moreover this example <str<strong>on</strong>g>of</str<strong>on</strong>g> A q have no stratifying ideal.<br />

Example 11. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where s = 2, t = 1 <strong>and</strong> a = b = 2, A q is not self-injective,<br />

m<strong>on</strong>omial or Koszul. Moreover A q have no stratifying ideal.<br />

Therefore A q is new example <str<strong>on</strong>g>of</str<strong>on</strong>g> a class <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras for which <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology<br />

ring modulo nilpotence is finitely generated as a k-algebra.<br />

Next, we give <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong> for A to satisfy (Fg). Now, we<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is an r-th root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity for r ≥ 1, s, t ≥ 2 <strong>and</strong> ā, ¯b ≠ 0.<br />

Let ϕ: HH ∗ (A q ) → E(A q ) := ⊕ n≥0 Ext n A q<br />

(A q /rad A q , A q /rad A q ) be a homomorphism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graded rings given by ϕ(η) = η ⊗ Aq A q /rad A q . Then it is easy to see that E(A q ) n :=<br />

Ext n A q<br />

(A q /rad A q , A q /rad A q ) ≃ ∐ n<br />

l=0 ken 1 ⊕ ∐ t<br />

j=2 ken b(j) ⊕ ∐ s<br />

i=2 ken a(i)<br />

, <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> image<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ϕ is precisely <str<strong>on</strong>g>the</str<strong>on</strong>g> graded ring k[x, y] where x := ∑ t<br />

j=1 e2r b(j) <strong>and</strong> y := ∑ s<br />

i=1 e2r a(i)<br />

2r. Then, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong>.<br />

Propositi<strong>on</strong> 12. E(A q ) is a finitely generated left k[x, y]-module.<br />

in degree<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r cases, we have same results as Propositi<strong>on</strong> 12. Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

immediate c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Propositi<strong>on</strong> 12.<br />

Theorem 13. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where s ≥ 2 or t ≥ 2, if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity <str<strong>on</strong>g>the</str<strong>on</strong>g>n A q satisfies<br />

(Fg).<br />

By [2], Theorem 9 <strong>and</strong> 13, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary <strong>and</strong> sufficient c<strong>on</strong>diti<strong>on</strong> for A q to<br />

satisfy (Fg).<br />

Theorem 14. A q satisfies (Fg) if <strong>and</strong> <strong>on</strong>ly if q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity.<br />

Remark 15. By Theorem 2.5 in [4] <strong>and</strong> Theorem 14, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where q is a root <str<strong>on</strong>g>of</str<strong>on</strong>g> unity,<br />

we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following properties<br />

(1) A q is Gorenstein.<br />

(2) The support variety <str<strong>on</strong>g>of</str<strong>on</strong>g> an A q -module M is trivial if <strong>and</strong> <strong>on</strong>ly if <str<strong>on</strong>g>the</str<strong>on</strong>g> projective<br />

dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M is finite.<br />

References<br />

[1] P. A. Bergh, K. Erdmann, Homology <strong>and</strong> cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum complete intersecti<strong>on</strong>s, Algebra<br />

Number <strong>Theory</strong> 2 (2008), 501–522.<br />

[2] P. A. Bergh, S. Oppermann, Cohomology <str<strong>on</strong>g>of</str<strong>on</strong>g> twisted tensor products, J. Algebra 320 (2008), 3327–3338.<br />

[3] R.-O. Buchweitz, E. L. Green, D. Madsen, Ø. Solberg, Finite Hochschild cohomology without finite<br />

global dimensi<strong>on</strong>, Math. Res. Lett. 12 (2005), 805–816.<br />

[4] Erdmann, K., Holloway, M., Snashall, N., Solberg, Ø., R. Taillefer, Support varieties for selfinjective<br />

algebras, K-<strong>Theory</strong> 33 (2004), 67–87.<br />

[5] K. Erdmann, Ø. Solberg, Radical cube zero weakly symmetric algebras <strong>and</strong> support varieties, J. Pure<br />

Appl. Algebra 215 (2011), 185–200.<br />

–141–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!