20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>on</strong> generating characters, which helped me develop my approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> subject. Finally,<br />

I thank my wife Elizabeth S. Moore for her encouragement <strong>and</strong> support.<br />

2. Finite Frobenius <strong>Ring</strong>s<br />

In an effort to make this article somewhat self-c<strong>on</strong>tained, both for ring-<str<strong>on</strong>g>the</str<strong>on</strong>g>orists <strong>and</strong><br />

coding-<str<strong>on</strong>g>the</str<strong>on</strong>g>orists, I include some background material <strong>on</strong> finite Frobenius rings. The goal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> is to show that finite Frobenius rings are characterized by having free<br />

character modules. Useful references for this material are Lam’s books [19] <strong>and</strong> [20].<br />

All rings will be associative with 1, <strong>and</strong> all modules will be unitary. While left modules<br />

will appear most <str<strong>on</strong>g>of</str<strong>on</strong>g>ten, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are comparable results for right modules. Almost all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rings used in this article will be finite, so that some definiti<strong>on</strong>s that are more broadly<br />

applicable may be simplified in <str<strong>on</strong>g>the</str<strong>on</strong>g> finite c<strong>on</strong>text.<br />

2.1. Definiti<strong>on</strong>s. Given a finite ring R, its (Jacobs<strong>on</strong>) radical rad(R) is <str<strong>on</strong>g>the</str<strong>on</strong>g> intersecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal left ideals <str<strong>on</strong>g>of</str<strong>on</strong>g> R; rad(R) is itself a two-sided ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R. A left R-module<br />

is simple if it has no n<strong>on</strong>zero proper submodules. Given a left R-module M, its socle<br />

soc(M) is <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> simple submodules <str<strong>on</strong>g>of</str<strong>on</strong>g> M. A ring R has a left socle soc( R R)<br />

<strong>and</strong> a right socle soc(R R ) (from viewing R as a left R-module or as a right R-module);<br />

both socles are two-sided ideals, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y may not be equal. (They are equal if R is<br />

semiprime, which, for finite rings, is equivalent to being semisimple.)<br />

Let R be a finite ring. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient ring R/ rad(R) is semi-simple <strong>and</strong> is isomorphic<br />

to a direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix rings over finite fields (Wedderburn-Artin):<br />

(2.1) R/ rad(R) ∼ =<br />

k⊕<br />

M mi (F qi ),<br />

where each q i is a prime power; F q denotes a finite field <str<strong>on</strong>g>of</str<strong>on</strong>g> order q, q a prime power, <strong>and</strong><br />

M m (F q ) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> m × m matrices over F q .<br />

Definiti<strong>on</strong> 1 ([19, Theorem 16.14]). A finite ring R is Frobenius if R (R/ rad(R)) ∼ =<br />

soc( R R) <strong>and</strong> (R/ rad(R)) R<br />

∼ = soc(RR ).<br />

This definiti<strong>on</strong> applies more generally to Artinian rings. It is a <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> H<strong>on</strong>old [15,<br />

Theorem 2] that, for finite rings, <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphisms (left or right) is needed.<br />

Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix rings M mi (F qi ) in (2.1) has a simple left module T i := M mi ×1(F qi ),<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> all m i × 1 matrices over F qi , under left matrix multiplicati<strong>on</strong>. From (2.1) it<br />

follows that, as left R-modules, we have an isomorphism<br />

i=1<br />

(2.2) R(R/ rad(R)) ∼ =<br />

k⊕<br />

m i T i .<br />

It is known that <str<strong>on</strong>g>the</str<strong>on</strong>g> T i , i = 1, . . . , k, form a complete list <str<strong>on</strong>g>of</str<strong>on</strong>g> simple left R-modules, up to<br />

isomorphism.<br />

Because <str<strong>on</strong>g>the</str<strong>on</strong>g> left socle <str<strong>on</strong>g>of</str<strong>on</strong>g> an R-module is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> simple left R-modules, it can be<br />

expressed as a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> T i . In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> left socle <str<strong>on</strong>g>of</str<strong>on</strong>g> R itself admits such an<br />

expressi<strong>on</strong>:<br />

–225–<br />

i=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!