20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

whence <str<strong>on</strong>g>the</str<strong>on</strong>g> set Λ d−t (A) cannot be finite. Thus t = 0 <strong>and</strong> A a generalized Cohen-Macaulay<br />

ring.<br />

□<br />

3. The sec<strong>on</strong>d Hilbert coefficients e 2 Q (A) <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

In this secti<strong>on</strong> we study <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d Hilbert coefficients e 2 Q (A) <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter ideals Q.<br />

The purpose is to find <str<strong>on</strong>g>the</str<strong>on</strong>g> sharp bound for e 2 Q (A). The bound |e2 Q (A)| ≤ 3(r + 1)I(A)<br />

given by Theorem 1 is too huge in general <strong>and</strong> far from <str<strong>on</strong>g>the</str<strong>on</strong>g> sharp bound.<br />

Let us begin with <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Lemma 5. Suppose that d = 2 <strong>and</strong> depth A > 0. Let Q = (x, y) be a parameter ideal in<br />

A <strong>and</strong> assume that x is superficial with respect to Q. Then<br />

( )<br />

[(x<br />

e 2 l ) : y l ] ∩ Q l<br />

Q(A) = −l A ≤ 0<br />

(x l )<br />

for all l ≫ 0.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let l ≫ 0 be an integer which is sufficiently large <strong>and</strong> put I = Q l . Let G = G(I)<br />

<strong>and</strong> R = R(I) be <str<strong>on</strong>g>the</str<strong>on</strong>g> associated graded ring <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Rees algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> I, respectively. We<br />

put M = mR + R + . Then [H i M (G)] n = (0) for all integers i ∈ Z <strong>and</strong> n > 0, thanks to<br />

[6, Lemma 2.4]. We put a = x l <strong>and</strong> b = y l . Then <str<strong>on</strong>g>the</str<strong>on</strong>g> element a remains superficial with<br />

respect to I <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> equality I 2 = (a, b)I holds true, whence a 2 (G) < 0.<br />

We fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Claim 6. [H i M (R)] ∼ 0 = [H i M (G)] 0 as A-modules for all i ∈ Z. Hence H 0 M (G) = (0), so<br />

that f = at ∈ R is G-regular.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Claim 6. Let L = R + <strong>and</strong> apply <str<strong>on</strong>g>the</str<strong>on</strong>g> functors H i M (∗) to <str<strong>on</strong>g>the</str<strong>on</strong>g> following can<strong>on</strong>ical<br />

exact sequences<br />

0 → L → R p → A → 0 <strong>and</strong> 0 → L(1) → R → G → 0,<br />

where p denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> projecti<strong>on</strong>, <strong>and</strong> get <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequences<br />

(1) · · · → H i−1<br />

m (A) → H i M(L) → H i M(R) → H i m(A) → · · · <strong>and</strong><br />

(2) · · · → H i−1<br />

M (G) → Hi M(L)(1) → H i M(R) → H i M(G) → H i+1<br />

M (L)(1) → · · ·<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> local cohomology modules. Then by exact sequence (2) we get <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism<br />

[H i M(L)] n+1<br />

∼ = [H<br />

i<br />

M (R)] n<br />

for n ≥ 1, because [H i−1<br />

M (G)] n = [H i M (G)] n = (0) for n ≥ 1, while we have <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphism<br />

[H i M(L)] n+1<br />

∼ = [H<br />

i<br />

M (R)] n+1<br />

for n ≥ 1, thanks to exact sequence (1). Hence [H i M (R)] n ∼ = [H i M (R)] n+1 for n ≥ 1, which<br />

implies [H i M (R)] n = (0) for all i ∈ Z <strong>and</strong> n ≥ 1, because [H i M (R)] n = (0) for n ≫ 0. Thus<br />

by exact sequence (1) we get [H i M (L)(1)] n = (0) for all i ∈ Z <strong>and</strong> n ≥ 0, so that by exact<br />

sequence (2) we see [H i M (R)] 0 ∼ = [H i M (G)] 0 as A-modules for all i ∈ Z. C<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case where i = 1 in exact sequence (2), we have <str<strong>on</strong>g>the</str<strong>on</strong>g> embedding<br />

0 → H 0 M(G) → H 1 M(L)(1),<br />

–158–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!