20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THE LOEWY LENGTH OF TENSOR PRODUCTS FOR DIHEDRAL<br />

TWO-GROUPS<br />

ERIK DARPÖ AND CHRISTOPHER C. GILL<br />

Abstract. The indecomposable modules <str<strong>on</strong>g>of</str<strong>on</strong>g> a dihedral 2-group over a field <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic<br />

2 were classified by <strong>Ring</strong>el over 30 years ago. However, relatively little is known<br />

about <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g> such modules, except in certain special cases. We describe<br />

here <str<strong>on</strong>g>the</str<strong>on</strong>g> main result <str<strong>on</strong>g>of</str<strong>on</strong>g> our recent work determining <str<strong>on</strong>g>the</str<strong>on</strong>g> Loewy length <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> modules for a dihedral 2-group. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> this result, we can determine<br />

precisely when a tensor product has a projective direct summ<strong>and</strong>.<br />

1. Introducti<strong>on</strong><br />

Let k be a field <str<strong>on</strong>g>of</str<strong>on</strong>g> positive characteristic p <strong>and</strong> let G be a finite group. The group algebra<br />

kG is a Hopf algebra with coproduct <strong>and</strong> co-unit given by ∆( ∑ g∈G r gg) = ∑ g∈G r gg ⊗ g<br />

<strong>and</strong> ɛ( ∑ g∈G r gg) = ∑ g∈G r g for r g ∈ k. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a tensor product operati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> kG-modules. If M <strong>and</strong> N are kG-modules, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> M <strong>and</strong><br />

N is <str<strong>on</strong>g>the</str<strong>on</strong>g> module with underlying vector space M ⊗ k N <strong>and</strong> module structure given by<br />

g(m ⊗ n) = ∆(g)(m ⊗ n) = gm ⊗ gn for g ∈ G, m ∈ M, n ∈ N. The tensor product is a<br />

frequently used tool in <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite groups. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> problem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> determining <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> two modules <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite group G<br />

– <str<strong>on</strong>g>the</str<strong>on</strong>g> Clebsch-Gordan problem – can be extremely difficult.<br />

One approach to underst<strong>and</strong>ing tensor products <str<strong>on</strong>g>of</str<strong>on</strong>g> kG-modules goes via <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong><br />

ring, or Green ring, <str<strong>on</strong>g>of</str<strong>on</strong>g> kG. The isomorphism classes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al kG-modules<br />

form a semiring, with additi<strong>on</strong> given by <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum, <strong>and</strong> multiplicati<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor<br />

product <str<strong>on</strong>g>of</str<strong>on</strong>g> kG-modules. The Green ring, A(kG), is <str<strong>on</strong>g>the</str<strong>on</strong>g> Groe<str<strong>on</strong>g>the</str<strong>on</strong>g>ndieck ring <str<strong>on</strong>g>of</str<strong>on</strong>g> this semiring,<br />

i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> ring obtained by formally adjoining additive inverses to all elements in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

semiring. Research in this directi<strong>on</strong> was pi<strong>on</strong>eered by J. A. Green [6], who proved <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Green ring <str<strong>on</strong>g>of</str<strong>on</strong>g> a cyclic p-group is semisimple. The questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> semisimplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green<br />

ring for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r finite groups has been studied by several authors since. Bens<strong>on</strong> <strong>and</strong> Carls<strong>on</strong><br />

[2] gave a method to produce nilpotent elements in a Green ring, <strong>and</strong> determined a quotient<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green ring which has no nilpotent elements.<br />

This so-called Bens<strong>on</strong>–Carls<strong>on</strong> quotient <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Green ring was studied by Archer [1] in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups, who realised it as an integral group ring <str<strong>on</strong>g>of</str<strong>on</strong>g> an abelian,<br />

infinitely generated, torsi<strong>on</strong>-free group. Archer gave a precise statement relating <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two elements in this infinite group to <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er–Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

kD 4q . The Green ring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Klein four group V 4 was completely determined by C<strong>on</strong>l<strong>on</strong><br />

[4]; a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> this result can be found in [1].<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> dihedral 2-groups D 4q , <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable modules, over fields <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic<br />

2, were classified by <strong>Ring</strong>el [7] over 30 years ago. However, very little progress has been<br />

made towards underst<strong>and</strong>ing <str<strong>on</strong>g>the</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tensor product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> kD 4q -modules. In<br />

–23–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!