20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2. The Eliahou-Kervaire type resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜S/ b-pol(I)<br />

Throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper, I is a Borel fixed m<strong>on</strong>omial ideal with deg m ≤ d<br />

for all m ∈ G(I). For <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alternative polarizati<strong>on</strong> b-pol(I) <str<strong>on</strong>g>of</str<strong>on</strong>g> I <strong>and</strong><br />

related c<strong>on</strong>cepts, c<strong>on</strong>sult <str<strong>on</strong>g>the</str<strong>on</strong>g> previous secti<strong>on</strong>. For a m<strong>on</strong>omial m = ∏ n<br />

i=1 xa i<br />

i ∈ S, set<br />

µ(m) := min{ i | a i > 0 } <strong>and</strong> ν(m) := max{ i | a i > 0 }. In [7], it is shown that any<br />

m<strong>on</strong>omial m ∈ I has a unique expressi<strong>on</strong> m = m 1 ·m 2 with ν(m 1 ) ≤ µ(m 2 ) <strong>and</strong> m 1 ∈ G(I).<br />

Following [7], we set g(m) := m 1 . For i with i < ν(m), let<br />

b i (m) = (x i /x k ) · m, where k := min{ j | a j > 0, j > i}.<br />

Since I is Borel fixed, m ∈ I implies b i (m) ∈ I.<br />

Definiti<strong>on</strong> 1 ([14, Definiti<strong>on</strong> 2.1]). For a finite subset ˜F = { (i 1 , j 1 ), (i 2 , j 2 ), . . . , (i q , j q ) }<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> N × N <strong>and</strong> a m<strong>on</strong>omial m = ∏ e<br />

i=1 x α i<br />

= ∏ n<br />

i=1 xa i<br />

i ∈ G(I) with 1 ≤ α 1 ≤ α 2 ≤ · · · ≤<br />

α e ≤ n, we say <str<strong>on</strong>g>the</str<strong>on</strong>g> pair ( ˜F , ˜m) is admissible (for b-pol(I)), if <str<strong>on</strong>g>the</str<strong>on</strong>g> following are satisfied:<br />

(a) 1 ≤ i 1 < i 2 < · · · < i q < ν(m),<br />

(b) j r = max{ l | α l ≤ i r } + 1 (equivalently, j r = 1 + ∑ i r<br />

l=1 a l) for all r.<br />

For m ∈ G(I), <str<strong>on</strong>g>the</str<strong>on</strong>g> pair (∅, ˜m) is also admissible.<br />

The following are fundamental properties <str<strong>on</strong>g>of</str<strong>on</strong>g> admissible pairs.<br />

Lemma<br />

∏<br />

2. Let ( ˜F , ˜m) be an admissible pair with ˜F = { (i 1 , j 1 ), . . . , (i q , j q ) } <strong>and</strong> m =<br />

x<br />

a i<br />

i ∈ G(I). Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

(i) j 1 ≤ j 2 ≤ · · · ≤ j q .<br />

(ii) x k,jr · b-pol(b ir (m)) = x ir,jr · b-pol(m), where k = min{ l | l > i r , a l > 0 }.<br />

For m ∈ G(I) <strong>and</strong> an integer i with 1 ≤ i < ν(m), set m ⟨i⟩ := g(b i (m)) <strong>and</strong> ˜m ⟨i⟩ :=<br />

b-pol(m ⟨i⟩ ). If i ≥ ν(m), we set m ⟨i⟩ := m for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venience. In <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lemma 2,<br />

˜m ⟨ir ⟩ divides x ir,j r<br />

· ˜m for all 1 ≤ r ≤ q.<br />

For ˜F = { (i 1 , j 1 ), . . . , (i q , j q ) } <strong>and</strong> r with 1 ≤ r ≤ q, set ˜F r := ˜F \ { (i r , j r ) }, <strong>and</strong> for<br />

an admissible pair ( ˜F , ˜m) for b-pol(I),<br />

Lemma 3. Let ( ˜F , ˜m) be as in Lemma 2.<br />

B( ˜F , ˜m) := { r | ( ˜F r , ˜m ⟨ir⟩) is admissible }.<br />

(i) For all r with 1 ≤ r ≤ q, ( ˜F r , ˜m) is admissible.<br />

(ii) We always have q ∈ B( ˜F , ˜m).<br />

(iii) Assume that ( ˜F r , ˜m ⟨ir ⟩) satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> (a) <str<strong>on</strong>g>of</str<strong>on</strong>g> Definiti<strong>on</strong> 1. Then r ∈<br />

B( ˜F , ˜m) if <strong>and</strong> <strong>on</strong>ly if ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r j r < j r+1 or r = q.<br />

(iv) For r, s with 1 ≤ r < s ≤ q <strong>and</strong> j r < j s , we have b ir (b is (m)) = b is (b ir (m)) <strong>and</strong><br />

hence (˜m ⟨ir ⟩) ⟨is ⟩ = (˜m ⟨is ⟩) ⟨ir ⟩.<br />

(v) For r, s with 1 ≤ r < s ≤ q <strong>and</strong> j r = j s , we have b ir (m) = b ir (b is (m)) <strong>and</strong> hence<br />

˜m ⟨ir⟩ = (˜m ⟨is⟩) ⟨ir⟩.<br />

Example 4. Let I ⊂ S = k[x 1 , x 2 , x 3 , x 4 ] be <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest Borel fixed ideal c<strong>on</strong>taining<br />

m = (x 1 ) 2 x 3 x 4 . In this case, m ′ ⟨i⟩ = g(b i(m ′ )) for all m ′ ∈ G(I). Hence, we have m ⟨1⟩ =<br />

(x 1 ) 3 x 4 , m ⟨2⟩ = (x 1 ) 2 x 2 x 4 <strong>and</strong> m ⟨3⟩ = (x 1 ) 2 (x 3 ) 2 . The following 3 pairs are all admissible.<br />

–145–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!