20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Observe first that for each indecomposable n<strong>on</strong> projective R-module M, we have<br />

l(Ω 2 M) = l(τM). Now, applying <str<strong>on</strong>g>the</str<strong>on</strong>g> previous Lemma 3.3, we obtain for each i ≥ 0<br />

that l(Ω i B) ≤ l(Ω i C) + α/2, <strong>and</strong> l(Ω i+2 C) ≤ l(Ω i B) + α/2 for some positive number α.<br />

Hence, for each i ≥ 0 we have l(Ω i+2 C) − l(Ω i C) ≤ α. In particular, for each n ≥ 0 we<br />

have l(Ω 2n C) − l(C) ≤ nα. This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> C is bounded by 2. If<br />

cx C = 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n, since it is not τ periodic, <str<strong>on</strong>g>the</str<strong>on</strong>g> module C must lie in a ZA ∞ -comp<strong>on</strong>ent<br />

by [17], but for <str<strong>on</strong>g>the</str<strong>on</strong>g>se comp<strong>on</strong>ents every irreducible map is eventually Ω-perfect. Hence<br />

cx C = 2.<br />

□<br />

We obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> following immediate c<strong>on</strong>sequence: assume that we have a comp<strong>on</strong>ent C,<br />

whose stable part C s is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form ZA ∞ ∞, <strong>and</strong> assume also that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an Ausl<strong>and</strong>er-<br />

Reiten sequence 0 → τC → E ⊕ F → C → 0 where E <strong>and</strong> F are indecomposable, <strong>and</strong><br />

nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r E → C nor F → C is eventually Ω-perfect. Observe also that in this case, no<br />

irreducible map in C s between indecomposable modules is eventually Ω-perfect. It follows<br />

immediately from <str<strong>on</strong>g>the</str<strong>on</strong>g> previous propositi<strong>on</strong> that every n<strong>on</strong> projective module in C has<br />

complexity 2. This situati<strong>on</strong> can actually occur. The following example is due to <strong>Ring</strong>el.<br />

Example 18. Let R be <str<strong>on</strong>g>the</str<strong>on</strong>g> finite dimensi<strong>on</strong>al selfinjective string algebra given by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quiver<br />

α<br />

β<br />

1 2 3<br />

γ<br />

modulo <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>s αβ = 0, δγ = 0, γαγα = βδβδ <strong>and</strong> αγαγα = δβδβδ = 0. There<br />

exists a ZA ∞ ∞ comp<strong>on</strong>ent where n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible maps between <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable<br />

modules is eventually Ω-perfect, (or even τ-perfect). For instance, c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> string<br />

module M = r 3 P 2 . It is easy to see that M is not eventually Ω-perfect, that α(M) = 2,<br />

<strong>and</strong> that no irreducible map from an indecomposable module to M is eventually Ω-perfect.<br />

Moreover, by [6], M lies in a comp<strong>on</strong>ent c<strong>on</strong>sisting entirely <str<strong>on</strong>g>of</str<strong>on</strong>g> string modules. But <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>ly string modules lying <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> an Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent can lie <strong>on</strong><br />

tubes (see [12], II.6.4), so this module bel<strong>on</strong>gs to a ZA ∞ ∞ comp<strong>on</strong>ent. Note also that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simple modules S 1 <strong>and</strong> S 3 are Ω-periodic <str<strong>on</strong>g>of</str<strong>on</strong>g> period 6, <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g>y both lie <strong>on</strong> tubes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rank 3.<br />

Example 19. Following Erdmann [12], for each positive integer m, we denote by Λ m <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

local symmetric string algebra over a field K,<br />

Λ m = K〈x, y〉/〈x 2 , (xy) m+1 − (yx) m+1 , x 2 − (yx) m y, x 3 〉<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> K is 2, <strong>and</strong> m+1 = 2 n ≥ 4, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra Λ m modulo its socle is<br />

isomorphic to <str<strong>on</strong>g>the</str<strong>on</strong>g> group algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> semidihedral group <str<strong>on</strong>g>of</str<strong>on</strong>g> order 2 n+2 modulo its socle.<br />

Motivated by this fact, Erdmann calls this algebra semidihedral. She proves that Λ m has<br />

infinitely many stable comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZA ∞ ∞ <strong>and</strong> ZD ∞ ([12], Propositi<strong>on</strong>s II,10.1 <strong>and</strong><br />

II,10.2), <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r stable comp<strong>on</strong>ents are tubes <str<strong>on</strong>g>of</str<strong>on</strong>g> rank 1 <strong>and</strong> 2. Moreover, she<br />

shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> unique simple module lies in a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type ZD ∞ so it is not periodic.<br />

Therefore, every indecomposable n<strong>on</strong> projective Λ m -module is eventually Ω-perfect by<br />

[18]. Note that in <str<strong>on</strong>g>the</str<strong>on</strong>g> same book, Erdmann generalizes <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> semidihedral algebra<br />

to that <str<strong>on</strong>g>of</str<strong>on</strong>g> algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> semidihedral type <strong>and</strong> <strong>on</strong>e also obtains interesting examples for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

n<strong>on</strong> local case ([12], Lemma VIII. 2.1.).<br />

–85–<br />

δ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!