20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Notice that P 2 = Q 2 = I. Let G be <str<strong>on</strong>g>the</str<strong>on</strong>g> group generated by P <strong>and</strong> Q (inside GL 2 (C)).<br />

Define an acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> G <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial ring C[X, Y ] by linear substituti<strong>on</strong>: (fS)(X, Y ) =<br />

f((X, Y )S) for S ∈ G. The paragraphs above prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

Propositi<strong>on</strong> 38. Let C be a self-dual binary code. Then its Hamming weight enumerator<br />

W C (X, Y ) is invariant under <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> group G. That is, W C (X, Y ) ∈ C[X, Y ] G ,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> G-invariant polynomials.<br />

Much more is true, in fact. Let C 2 ⊂ F 2 2 be <str<strong>on</strong>g>the</str<strong>on</strong>g> linear code C 2 = {00, 11}. Then C 2 is<br />

self-dual, <strong>and</strong> W C2 (X, Y ) = X 2 + Y 2 . Let E 8 ⊂ F 8 2 be <str<strong>on</strong>g>the</str<strong>on</strong>g> linear code generated by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rows <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following binary matrix<br />

⎛<br />

⎞<br />

1 1 1 1 0 0 0 0<br />

⎜0 0 1 1 1 1 0 0<br />

⎟<br />

⎝0 0 0 0 1 1 1 1⎠ .<br />

1 0 1 0 1 0 1 0<br />

Then E 8 is also self-dual, with W E8 (X, Y ) = X 8 + 14X 4 Y 4 + Y 8 .<br />

Theorem 39 (Gleas<strong>on</strong> (1970)). The ring <str<strong>on</strong>g>of</str<strong>on</strong>g> G-invariant polynomials is generated as an<br />

algebra by W C2 <strong>and</strong> W E8 . That is,<br />

C[X, Y ] G = C[X 2 + Y 2 , X 8 + 14X 4 Y 4 + Y 8 ].<br />

Gleas<strong>on</strong> proved similar statements in several o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>texts (doubly-even self-dual binary<br />

codes, self-dual ternary codes, Hermitian self-dual quaternary codes) [9]. The results<br />

all have this form: for linear codes <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain type (e.g., binary self-dual), <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Hamming<br />

weight enumerators are invariant under a certain finite matrix group G, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> G-invariant polynomials is generated as an algebra by <str<strong>on</strong>g>the</str<strong>on</strong>g> weight enumerators <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

explicit linear codes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> given type.<br />

Gleas<strong>on</strong>’s Theorem has been generalized greatly by Nebe, Rains, <strong>and</strong> Sloane [24]. Those<br />

authors have a general definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> a self-dual linear code defined over an<br />

alphabet A, where A is a finite left R-module. Associated to every type is a finite group<br />

G, called <str<strong>on</strong>g>the</str<strong>on</strong>g> Clifford-Weil group, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> (complete) weight enumerator <str<strong>on</strong>g>of</str<strong>on</strong>g> every selfdual<br />

linear code <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> given type is G-invariant. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> authors show (under certain<br />

hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R) that <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> all G-invariant polynomials is spanned by<br />

weight enumerators <str<strong>on</strong>g>of</str<strong>on</strong>g> self-dual codes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> given type.<br />

In order to define self-dual codes over n<strong>on</strong>-commutative rings, Nebe, Rains, <strong>and</strong> Sloane<br />

must cope with <str<strong>on</strong>g>the</str<strong>on</strong>g> difficulty that <str<strong>on</strong>g>the</str<strong>on</strong>g> dual code <str<strong>on</strong>g>of</str<strong>on</strong>g> a left linear code C in A n is a right linear<br />

code <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form (Ân : C) ⊂ Ân (cf., <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 23 in subsecti<strong>on</strong> 4.2). This<br />

difficulty can be addressed first by assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> ring R admits an anti-isomorphism ε,<br />

i.e., an isomorphism ε : R → R <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additive group, with ε(rs) = ε(s)ε(r), for r, s ∈ R.<br />

Then every left (resp., right) R-module M defines a right (resp., left) R-module ε(M).<br />

The additive group <str<strong>on</strong>g>of</str<strong>on</strong>g> ε(M) is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as that <str<strong>on</strong>g>of</str<strong>on</strong>g> M, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> right scalar multiplicati<strong>on</strong><br />

<strong>on</strong> ε(M) is mr := ε(r)m, m ∈ M, r ∈ R, where ε(r)m uses <str<strong>on</strong>g>the</str<strong>on</strong>g> left scalar multiplicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M. (And similarly for right modules.)<br />

Sec<strong>on</strong>dly, in order to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> character-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic annihilator (Ân : C) ⊂ Ân with<br />

a submodule in A n , Nebe, Rains, <strong>and</strong> Sloane assume <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> an isomorphism<br />

–243–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!