20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ON A DEGENERATION PROBLEM FOR COHEN-MACAULAY<br />

MODULES<br />

NAOYA HIRAMATSU<br />

1. Introducti<strong>on</strong><br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this article is to give an outline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper [3], which is a joint work with<br />

Yuji Yoshino.<br />

In this note, we would like to give several examples <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal Cohen-<br />

Macaulay modules <strong>and</strong> to show how we can describe <str<strong>on</strong>g>the</str<strong>on</strong>g>m (Theorem 12). This result<br />

depends heavily <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> recent work by Yoshino about <str<strong>on</strong>g>the</str<strong>on</strong>g> stable analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s<br />

for Cohen-Macaulay modules over a Gorenstein local algebra [9]. In Secti<strong>on</strong> 3 we<br />

also investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> extended versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong> order, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extensi<strong>on</strong> order <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> AR order (Theorem 22).<br />

2. Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s<br />

In this secti<strong>on</strong>, we recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong> <strong>and</strong> state several known results<br />

<strong>on</strong> degenerati<strong>on</strong>s.<br />

Definiti<strong>on</strong> 1. Let R be a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian algebra over a field k, <strong>and</strong> let M <strong>and</strong> N be finitely<br />

generated left R-modules. We say that M degenerates to N, or N is a degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M,<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a discrete valuati<strong>on</strong> ring (V, tV, k) that is a k-algebra (where t is a prime element)<br />

<strong>and</strong> a finitely generated left R ⊗ k V -module Q which satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s:<br />

(1) Q is flat as a V -module.<br />

(2) Q/tQ ∼ = N as a left R-module.<br />

(3) Q[1/t] ∼ = M ⊗ k V [1/t] as a left R ⊗ k V [1/t]-module.<br />

The following characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s has been proved by Yoshino [7].<br />

Theorem 2. [7, Theorem 2.2] The following c<strong>on</strong>diti<strong>on</strong>s are equivalent for finitely generated<br />

left R-modules M <strong>and</strong> N.<br />

(1) M degenerates to N.<br />

(2) There is a short exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated left R-modules<br />

( ϕ<br />

ψ)<br />

0 −−−→ Z −−−→ M ⊕ Z −−−→ N −−−→ 0,<br />

such that <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism ψ <str<strong>on</strong>g>of</str<strong>on</strong>g> Z is nilpotent, i.e. ψ n = 0 for n ≫ 1.<br />

Remark 3. Let R be a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian k-algebra.<br />

(1) Suppose that a finitely generated R-module M degenerates to a finitely generated<br />

module N. Then as a discrete valuati<strong>on</strong> ring V in Definiti<strong>on</strong> 1 we can always take<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ring k[t] (t) . See [7, Corollary 2.4.]. Thus we always take k[t] (t) as V .<br />

–60–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!