20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Since x l is A-regular <strong>and</strong> [(x l ) : y l ] ∩ (x l , y l ) = (x l ) by Claim 9, we readily see that<br />

x l , y l is a d-sequence in A.<br />

(3) ⇒ (2) This is clear.<br />

(2) ⇒ (1) It is well-known that e 2 (x,y)(A) = 0, if depth A > 0 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> system x, y <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameters forms a d-sequence in A; see Propositi<strong>on</strong> 11 below.<br />

□<br />

Passing to <str<strong>on</strong>g>the</str<strong>on</strong>g> ring A/H 0 m(A), thanks to Theorem 8, we readily get <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Corollary 10. Suppose that d = 2 <strong>and</strong> let Q be a parameter ideal in A. Then<br />

h 0 (A) − h 1 (A) ≤ e 2 Q(A) ≤ h 0 (A).<br />

The results in <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong> are, more or less, known.<br />

Propositi<strong>on</strong> 11. ([5, Propositi<strong>on</strong> 3.4]) Suppose that d > 0 <strong>and</strong> let Q = (a 1 , a 2 , · · · , a d )<br />

be a parameter ideal in A. Let G = G(Q) <strong>and</strong> R = R(Q). Let f i = a i t ∈ R for 1 ≤ i ≤ d.<br />

Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence a 1 , a 2 , · · · , a d forms a d-sequence in A. Then we have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following, where Q i = (a 1 , a 2 , · · · , a i ) for 0 ≤ i ≤ d.<br />

(1) e 0 Q (A) = l A(A/Q) − l A ([Q d−1 : a d ]/Q d−1 ).<br />

(2) (−1) i e i Q (A) = h0 (A/Q d−i ) − h 0 (A/Q d−i−1 ) for 1 ≤ i ≤ d − 1 <strong>and</strong> (−1) d e d Q (A) =<br />

h 0 (A).<br />

(3) l A (A/Q n+1 ) = ∑ d<br />

i=0 (−1)i e i Q (A)( n+d−i<br />

d−i<br />

(4) f 1 , f 2 , · · · , f d forms a d-sequence in G.<br />

(5) H 0 M (G) = [H0 M (G)] 0 ∼ = H 0 m(A), where M = mR + R +<br />

(6) [H i M (G)] n = (0) for all n > −i <strong>and</strong> i ∈ Z, whence reg G = 0.<br />

)<br />

for all n ≥ 0, whence lA (A/Q) = ∑ d<br />

i=0 (−1)i e i Q (A).<br />

Let us note <strong>on</strong>e example <str<strong>on</strong>g>of</str<strong>on</strong>g> local rings A which are not generalized Cohen-Macaulay<br />

rings but every parameter ideal in A is generated by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters that forms<br />

a d-sequence in A.<br />

Example 12. Let R be a regular local ring with <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal ideal n <strong>and</strong> d = dim R ≥ 2.<br />

Let X 1 , X 2 , · · · , X d be a regular system <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> R. We put p = (X 1 , X 2 , · · · , X d−1 )<br />

<strong>and</strong> D = R/p. Then D is a DVR. Let A = R ⋉ D denote <str<strong>on</strong>g>the</str<strong>on</strong>g> idealizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> D over R.<br />

Then A is a Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian local ring with <str<strong>on</strong>g>the</str<strong>on</strong>g> maximal ideal m = n × D, dim A = d, <strong>and</strong><br />

depth A = 1. We fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

(1) Λ i (A) = {0} for all 1 ≤ i ≤ d such that i ≠ d − 1.<br />

(2) Λ 0 (A) = {n | 0 < n ∈ Z} <strong>and</strong> Λ d−1 (A) = {(−1) d−1 n | 0 < n ∈ Z}.<br />

(3) After renumbering, every system <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters in A forms a d-sequence.<br />

The ring A is not a generalized Cohen-Macaulay ring, because H 1 m(A) ( ∼ = H 1 n(D)) is not a<br />

finitely generated A-module.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> Secti<strong>on</strong> 3 let us c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> bound for e 2 Q (Q) in higher dimensi<strong>on</strong>al cases.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case where dim A ≥ 3 we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following.<br />

Theorem 13. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A ≥ 3.<br />

Let Q = (a 1 , a 2 , · · · , a d ) be a parameter ideal in A. Then<br />

∑d−1<br />

( ) d − 3<br />

∑d−2<br />

( ) d − 3<br />

−<br />

h j (A) ≤ e 2<br />

j − 2<br />

Q(A) ≤<br />

h j (A).<br />

j − 1<br />

j=2<br />

–161–<br />

j=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!