20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

⎛<br />

⎞<br />

0 0 c 0<br />

1 c t D c = ⎜<br />

1<br />

⎝ .<br />

⎟<br />

.. .<br />

⎠<br />

0 1 c n−1<br />

On R n define <str<strong>on</strong>g>the</str<strong>on</strong>g> st<strong>and</strong>ard inner product by<br />

< x, y >= ∑ n−1<br />

i=0 x iy i<br />

for x = (x 0 , x 1 , · · · , x n−1 ), y = (y 0 , y 1 , · · · , y n−1 ) ∈ R n .<br />

The dual code C ⊥ <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear code C is defined by<br />

Clearly, C ⊥ is a linear code over R.<br />

C ⊥ = {a ∈ R n | < c, a >= 0 for any c ∈ C}.<br />

Theorem 6. For a code C ⊆ R n , we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>s:<br />

(1) If C is polycyclic, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C ⊥ is sequential.<br />

(2) If C is sequential, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C ⊥ is polycyclic.<br />

4. Codes over finite commutative QF rings<br />

Let R be a (not necessarily commutative) ring. A left R-module P is projective if for<br />

every R-epimorphism g : M → N <strong>and</strong> every R-homomorphism f : P → N, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a<br />

R-homomorphism h : P → M with f = g◦h.<br />

A left R-module Q is injective if for every R-m<strong>on</strong>omorphism g : N → M <strong>and</strong> every<br />

R-homomorphism f : N → Q, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a R-homomorphism h : M → Q with f = h◦g.<br />

The ring R is said to be left (resp. right) self-injective if R itself is injective as left<br />

(resp. right) R-module. If both c<strong>on</strong>diti<strong>on</strong>s hold, R is said to be a self-injective ring.<br />

A left R-module M is Artinian if M is satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> descending chain c<strong>on</strong>diti<strong>on</strong> <strong>on</strong><br />

submodules. A ring R is left (resp. right) Artinian if R itself is Artinian as left (resp.<br />

right) R-module. If both c<strong>on</strong>diti<strong>on</strong>s hold, R is said to be an Artinian ring.<br />

It is clear that a finite ring is an Artinian ring.<br />

Definiti<strong>on</strong> 7. For a (not necessarily commutative) ring R, R is called a QF (quasi-<br />

Frobenius) ring if R is left Artinian <strong>and</strong> left self-injective.<br />

It is well-known that <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a QF ring is left-right symmetric.<br />

For any R-submodule C ⊆ R n , C ◦ is defined by<br />

C ◦ = {λ ∈ Hom R (R n , R)|λ(C) = 0}.<br />

Theorem 8. For a (not necessarily commutative) ring R, <str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s are<br />

equivalent:<br />

(1) R is a QF ring.<br />

(2) For submodules M ⊆ R n , M ◦◦ = M.<br />

Theorem 9. For a (not necessarily commutative) ring R, <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent:<br />

(1) R is a QF ring.<br />

(2) A left module is projective if <strong>and</strong> <strong>on</strong>ly if it is injective.<br />

We define an R-module homomorphism δ x : R n → R as δ x (y) =< y, x > for any x ∈ R n .<br />

–108–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!