20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

(a) <str<strong>on</strong>g>the</str<strong>on</strong>g> adjoint triples (i ∗ , i ∗ = i ! , i ! ) <strong>and</strong> (j ! , j ! = j ∗ , j ∗ ) are given by<br />

i ∗ =? ⊗ L A B, j ! =? ⊗ L eAe eA,<br />

i ∗ = RHom B (B, ?), j ! = RHom A (eA, ?),<br />

i ! =? ⊗ L B B, j ∗ =? ⊗ L A Ae,<br />

i ! = RHom A (B, ?), j ∗ = RHom eAe (Ae, ?),<br />

where B is c<strong>on</strong>sidered as a left A-module <strong>and</strong> as a right A-module via <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism<br />

f;<br />

(b) <str<strong>on</strong>g>the</str<strong>on</strong>g> degree i comp<strong>on</strong>ent B i <str<strong>on</strong>g>of</str<strong>on</strong>g> B vanishes for i > 0;<br />

(c) <str<strong>on</strong>g>the</str<strong>on</strong>g> 0-th cohomology H 0 (B) <str<strong>on</strong>g>of</str<strong>on</strong>g> B is isomorphic to A/AeA.<br />

As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> recollement, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a triangle equivalence<br />

per(B) ∼ = (K b (proj A)/ thick(eA)) ω .<br />

Here per(B) is <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D(B) which c<strong>on</strong>tains B <strong>and</strong> which<br />

is closed under taking direct summ<strong>and</strong>s, K b (proj A) is <str<strong>on</strong>g>the</str<strong>on</strong>g> homotopy category <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded<br />

complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated projective A-modules, thick(eA) is <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest triangulated<br />

subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> K b (proj A) which c<strong>on</strong>tains eA <strong>and</strong> which is closed under taking direct<br />

summ<strong>and</strong>s, <strong>and</strong> () ω denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> idempotent completi<strong>on</strong>.<br />

Assume fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r that A/AeA is finite-dimensi<strong>on</strong>al <strong>and</strong> that each simple A/AeA-module<br />

has finite projective dimensi<strong>on</strong> over A. Then<br />

(d) H i (B) is finite-dimensi<strong>on</strong>al over k for any i ∈ Z, equivalently, per(B) is Homfinite,<br />

i.e. Hom(M, N) is finite-dimensi<strong>on</strong>al over k for any M, N ∈ per(B),<br />

(e) D fd (B) ⊆ per(B), here D fd (B) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D(B) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

those objects whose total cohomology is finite-dimensi<strong>on</strong>al over k,<br />

(f) per(B) has a t-structure whose heart is fdmod −A/AeA, <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitedimensi<strong>on</strong>al<br />

modules over A/AeA,<br />

(g) if moreover <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a quasi-isomorphism from a dg algebra à = ( ̂kQ, d) to A, where<br />

Q is a graded quiver c<strong>on</strong>centrated in n<strong>on</strong>-positive degrees <strong>and</strong> d : ̂kQ → ̂kQ is a<br />

c<strong>on</strong>tinuous k-linear differential satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> graded Leibniz rule <strong>and</strong> d(̂m) ⊆ ̂m 2 ,<br />

such that e is <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> a sum ẽ <str<strong>on</strong>g>of</str<strong>on</strong>g> some trivial paths <str<strong>on</strong>g>of</str<strong>on</strong>g> Q, <str<strong>on</strong>g>the</str<strong>on</strong>g>n B is quasiisomorphic<br />

to Ã/ÃẽÃ. Here ̂kQ is <str<strong>on</strong>g>the</str<strong>on</strong>g> completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> path algebra kQ with<br />

respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> m-adic topology in <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> graded algebras for <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal m<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> kQ generated by all arrows, <strong>and</strong> ÃẽÃ is <str<strong>on</strong>g>the</str<strong>on</strong>g> closure <str<strong>on</strong>g>of</str<strong>on</strong>g> ÃẽÃ under <str<strong>on</strong>g>the</str<strong>on</strong>g> ̂m-adic<br />

topology for <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal ̂m <str<strong>on</strong>g>of</str<strong>on</strong>g> ̂kQ generated by all arrows.<br />

Thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma due to Keller, Theorem 3 (g) becomes practical when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> global dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A is 2.<br />

Lemma 4. Let A = ̂kQ ′ /(R) be <str<strong>on</strong>g>of</str<strong>on</strong>g> global dimensi<strong>on</strong> 2, where Q ′ is a finite (ordinary)<br />

quiver <strong>and</strong> R is a finite set <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal relati<strong>on</strong>s. Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> graded quiver obtained<br />

from Q ′ by adding an arrow ρ r <str<strong>on</strong>g>of</str<strong>on</strong>g> degree −1 from <str<strong>on</strong>g>the</str<strong>on</strong>g> source <str<strong>on</strong>g>of</str<strong>on</strong>g> r to <str<strong>on</strong>g>the</str<strong>on</strong>g> target <str<strong>on</strong>g>of</str<strong>on</strong>g> r for<br />

–264–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!