20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

quiver Q over K, <strong>and</strong> let D b (H) <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived category <str<strong>on</strong>g>of</str<strong>on</strong>g> H. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster<br />

category C H associated with H is defined to be <str<strong>on</strong>g>the</str<strong>on</strong>g> orbit category D b (H)/τ −1 [1], where τ<br />

denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten translati<strong>on</strong> in D b (H), <strong>and</strong> [1] is <str<strong>on</strong>g>the</str<strong>on</strong>g> shift functor in D b (H)<br />

([5, 10]). Note that, by [5], C H is a Krull-Schmidt category, <strong>and</strong> by Keller [20] it is also a<br />

triangulated category. A basic object T in C H is called a cluster tilting object, if it satisfies<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s ([5]):<br />

(1) Ext 1 C H<br />

(T, T ) = 0; <strong>and</strong><br />

(2) <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> indecomposable summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> T equals <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Q.<br />

Let ∆ be <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying graph <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> endomorphism ring End CH (T ) <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster<br />

tilting object T in C H is called a cluster-tilted algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type ∆ ([7]). In this note, we deal<br />

with cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynkin types A n <strong>and</strong> D n . Note that by [7] <str<strong>on</strong>g>the</str<strong>on</strong>g>se algebras<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type.<br />

In Secti<strong>on</strong> 2, we show that cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n are (D, A)-stacked m<strong>on</strong>omial<br />

algebras (with D = 2 <strong>and</strong> A = 1) <str<strong>on</strong>g>of</str<strong>on</strong>g> [18] (Lemma 3), <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n describe <str<strong>on</strong>g>the</str<strong>on</strong>g> structures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Hochschild cohomology rings modulo nilpotence by using [18] (Theorem 4). In<br />

Secti<strong>on</strong> 3, we determine <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo nilpotence for some<br />

cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type D n which are derived equivalent to a (D, A)-stacked m<strong>on</strong>omial<br />

algebra (Propositi<strong>on</strong> 7). We also describe <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo<br />

nilpotence for algebras in a class <str<strong>on</strong>g>of</str<strong>on</strong>g> some special biserial algebras which c<strong>on</strong>tains a clustertilted<br />

algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type D 4 (Theorem 9).<br />

2. Cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology<br />

rings modulo nilpotence<br />

In this secti<strong>on</strong> we describe <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hochschild cohomology rings modulo<br />

nilpotence for cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n (n ≥ 1).<br />

First we recall <str<strong>on</strong>g>the</str<strong>on</strong>g> presentati<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver <strong>and</strong> relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster-tilted algebras <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

type A n given in [3, 9]. For a vertex x in a quiver Γ , <str<strong>on</strong>g>the</str<strong>on</strong>g> neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> x is <str<strong>on</strong>g>the</str<strong>on</strong>g> full<br />

subquiver <str<strong>on</strong>g>of</str<strong>on</strong>g> Γ c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> x <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> vertices which are end-points <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows starting<br />

at x or start-points <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows ending with x. Let n ≥ 2 be an integer, <strong>and</strong> let Q n be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

class <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers Q satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

(1) Q has n vertices.<br />

(2) The neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> each vertex v <str<strong>on</strong>g>of</str<strong>on</strong>g> Q is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following forms:<br />

v❄ ❄❄❄❄ • ❄ ❄❄❄❄ • ❄ ❄❄❄❄<br />

<br />

• v❄ ❄❄❄❄ v<br />

8<br />

• •<br />

8888<br />

• ❄ ❄❄❄❄ • ❄ ❄❄❄❄ • ❄ ❄❄❄❄<br />

v<br />

v❄ ❄❄❄❄ v<br />

8<br />

• •<br />

8888<br />

–44–<br />

• ❄ ❄❄❄❄<br />

v❄ ❄❄❄❄<br />

88 888<br />

• •<br />

• ❄ ❄❄❄❄<br />

v❄ ❄❄❄❄<br />

8<br />

• 8888 •<br />

• ❄ ❄❄❄❄ •<br />

8<br />

v❄ 8888<br />

❄❄❄❄<br />

8<br />

• 8888 •

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!