20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Notati<strong>on</strong> 4. (1) Let A be an abelian category.<br />

(a) For a subcategory X <str<strong>on</strong>g>of</str<strong>on</strong>g> A, <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> A c<strong>on</strong>taining X which<br />

is closed under finite direct sums <strong>and</strong> direct summ<strong>and</strong>s is denoted by add A X .<br />

(b) We denote by C(A) <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> objects <str<strong>on</strong>g>of</str<strong>on</strong>g> A. The derived<br />

category <str<strong>on</strong>g>of</str<strong>on</strong>g> A is denoted by D(A). The left bounded, <str<strong>on</strong>g>the</str<strong>on</strong>g> right bounded<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> A are denoted by D + (A), D − (A) <strong>and</strong><br />

D b (A), respectively. We set D ∅ (A) = D(A), <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten write D ⋆ (A) with<br />

⋆ ∈ {∅, +, −, b} to mean D ∅ (A), D + (A), D − (A) <strong>and</strong> D b (A).<br />

(2) Let R be a ring. We denote by Mod R <strong>and</strong> mod R <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated R-modules, respectively. For a subcategory X<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mod R (when R is Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian), we put add R X = add mod R X .<br />

The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category has been introduced by Rouquier<br />

[14]. Now we recall its definiti<strong>on</strong>.<br />

Definiti<strong>on</strong> 5. Let T be a triangulated category.<br />

(1) A triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T is called thick if it is closed under direct summ<strong>and</strong>s.<br />

(2) Let X , Y be two subcategories <str<strong>on</strong>g>of</str<strong>on</strong>g> T . We denote by X ∗ Y <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> all objects M that admit exact triangles<br />

X → M → Y → ΣX<br />

with X ∈ X <strong>and</strong> Y ∈ Y. We denote by 〈X 〉 <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T<br />

c<strong>on</strong>taining X which is closed under finite direct sums, direct summ<strong>and</strong>s <strong>and</strong> shifts.<br />

For a n<strong>on</strong>-negative integer n, we define <str<strong>on</strong>g>the</str<strong>on</strong>g> subcategory 〈X 〉 n<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> T by<br />

⎧<br />

⎪⎨ {0} (n = 0),<br />

〈X 〉 n<br />

= 〈X 〉 (n = 1),<br />

⎪⎩<br />

〈〈X 〉 ∗ 〈X 〉 n−1<br />

〉 (2 ≤ n < ∞).<br />

Put 〈X 〉 ∞<br />

= ∪ n≥0 〈X 〉 n<br />

. When <str<strong>on</strong>g>the</str<strong>on</strong>g> ground category T should be specified, we<br />

write 〈X 〉 T n<br />

instead <str<strong>on</strong>g>of</str<strong>on</strong>g> 〈X 〉 n<br />

. For a ring R <strong>and</strong> a subcategory X <str<strong>on</strong>g>of</str<strong>on</strong>g> D(Mod R), we<br />

put 〈X 〉 R R)<br />

n<br />

= 〈X 〉D(Mod<br />

n<br />

.<br />

(3) The dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T , denoted by dim T , is <str<strong>on</strong>g>the</str<strong>on</strong>g> infimum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> integers d such that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an object M ∈ T with 〈M〉 d+1<br />

= T .<br />

3. Upper bounds<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> is to find explicit generators <strong>and</strong> upper bounds <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s<br />

for derived categories in several cases.<br />

We observe that <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bounded derived categories <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated<br />

modules over quotient singularities are at most <str<strong>on</strong>g>the</str<strong>on</strong>g>ir (Krull) dimensi<strong>on</strong>s, particularly that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y are finite.<br />

Propositi<strong>on</strong> 6. Let S be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> polynomial ring k[x 1 , . . . , x n ] or <str<strong>on</strong>g>the</str<strong>on</strong>g> formal power<br />

series ring k[[x 1 , . . . , x n ]] over a field k. Let G be a finite subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> general linear<br />

–8–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!