20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Let B = A/U(a d−1 ). We <str<strong>on</strong>g>the</str<strong>on</strong>g>n have<br />

∑d−3<br />

( ) d − 4<br />

e 2 QB(B) =<br />

h j (B)<br />

j − 1<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> same reas<strong>on</strong> as for <str<strong>on</strong>g>the</str<strong>on</strong>g> equality e 2 QC (C) = ∑ d−3<br />

e 2 QC (C) = ∑ d−3<br />

j=1<br />

j=1<br />

j=1<br />

( d−4<br />

j−1)<br />

h j (C) (in fact, to show<br />

( d−4<br />

j−1)<br />

h j (C), we <strong>on</strong>ly need that a 1 is superficial with respect to Q). Therefore,<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong> <strong>on</strong> d, we may choose elements β 2 , β 3 , · · · , β d ∈ B so<br />

that QB = (β 2 , β 3 , · · · , β d )B <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence β 2 , β 3 , · · · , β d forms a d-sequence in B.<br />

We put b 1 = a d−1 <strong>and</strong> write β j = b j with b j ∈ Q for 2 ≤ j ≤ d, where b j denotes <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

image <str<strong>on</strong>g>of</str<strong>on</strong>g> b j in B. We now put q ′ = (b 1 , b 2 , · · · , b d ). Then q ′ is a parameter ideal in A <strong>and</strong><br />

because U(b 1 ) ∩ Q = (b 1 ), we get<br />

Q ⊆ [q ′ + U(b 1 )] ∩ Q = q ′ + [U(b 1 ) ∩ Q] ⊆ q ′ + (b 1 ) = q ′ ;<br />

hence Q = q ′ . Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence b 2 , b 3 , · · · , b d forms a d-sequence in A/(b 1 ), so that<br />

b 1 , b 2 , · · · , b d forms a d-sequence in A, because b 1 is A-regular. This complete <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 15 <strong>and</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2 as well.<br />

□<br />

References<br />

[1] W. Bruns <strong>and</strong> J. Herzog, Cohen-Macaulay rings, Cambridge studies in advanced ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, 39,<br />

Cambridge University Press, Cambridge, New York, Port Chester, Melbourne Sydney, 1993.<br />

[2] L. Ghezzi, S. Goto, J. H<strong>on</strong>g, K. Ozeki, T. T. Phu<strong>on</strong>g, <strong>and</strong> W. V. Vasc<strong>on</strong>celos, Cohen–Macaulayness<br />

versus <str<strong>on</strong>g>the</str<strong>on</strong>g> vanishing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first Hilbert coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter ideals, L<strong>on</strong>d<strong>on</strong> Math. Soc., (2) 81<br />

(2010), 679–695.<br />

[3] S. Goto <strong>and</strong> K. Nishida, Hilbert coefficients <strong>and</strong> Buchsbaumness <str<strong>on</strong>g>of</str<strong>on</strong>g> associated graded rings, J. Pure<br />

<strong>and</strong> Appl. Algebra, Vol 181, 2003, 61–74.<br />

[4] S. Goto <strong>and</strong> K. Ozeki, Buchsbaumness in local rings possessing first Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters,<br />

Nagoya Math. J., 199 (2010), 95–105.<br />

[5] S. Goto <strong>and</strong> K. Ozeki, Uniform bounds for Hilbert coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, C<strong>on</strong>temporary Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics,<br />

555 (2011), 97–118.<br />

[6] L. T. Hoa, Reducti<strong>on</strong> numbers <strong>and</strong> Rees Algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> powers <str<strong>on</strong>g>of</str<strong>on</strong>g> ideal, Proc. Amer. Math. Soc, 119,<br />

1993, 415–422.<br />

[7] C. Huneke, On <str<strong>on</strong>g>the</str<strong>on</strong>g> Symmetric <strong>and</strong> Rees Algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> an Ideal Generated by a d-sequence, J. Algebra 62<br />

(1980) 268–275.<br />

[8] C. H. Linh <strong>and</strong> N. V. Trung, Uniform bounds in generalized Cohen-Macaulay rings, J. Algebra, 304<br />

(2006), 1147–1159.<br />

[9] M. M<strong>and</strong>al <strong>and</strong> J. K. Verma, On <str<strong>on</strong>g>the</str<strong>on</strong>g> Chern number <str<strong>on</strong>g>of</str<strong>on</strong>g> an ideal, Proc. Amer. Math Soc., 138. (2010),<br />

1995–1999.<br />

[10] P. Schenzel, Multiplizitäten in verallgemeinerten Cohen-Macaulay-Moduln, Math. Nachr., 88 (1979),<br />

295–306.<br />

[11] P. Schenzel, N. V. Trung, <strong>and</strong> N. T. Cu<strong>on</strong>g, Verallgemeinerte Cohen-Macaulay-Moduln, Math.<br />

Nachr., 85 (1978), 57–73.<br />

Meiji University<br />

1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan<br />

Email: kozeki@math.meiji.ac.jp<br />

–164–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!