20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

is <str<strong>on</strong>g>the</str<strong>on</strong>g> map given by x ′ ↦→ x <strong>and</strong> t ′ ↦→ t. Note that γ = µβ. The map α is naturally<br />

a homomorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> (R, A)-bimodules, <strong>and</strong> β, γ are naturally homomorphisms <str<strong>on</strong>g>of</str<strong>on</strong>g> (R, R)-<br />

bimodules. The ring R has <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a finitely generated U-module through α. The<br />

Koszul complex <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> U-regular sequence x ′ − x gives a free resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> U-module<br />

R:<br />

(4.1) 0 → U → U ⊕d → U ⊕ ( d 2) → · · · → U<br />

⊕( d 2) → U<br />

⊕d x ′ −x<br />

−−→ U α −→ R → 0.<br />

This is an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> (R, A)-bimodules. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> natural homomorphisms<br />

A ∼ = k[[x ′ ]] → k[[x ′ ]][x, t]/(f(x, t)),<br />

k[[x ′ ]][x, t]/(f(x, t)) → k[[x ′ ]][[x, t]]/(f(x, t)) ∼ = U<br />

are flat, so is <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong>. Therefore U is flat as a right A-module. The exact sequence<br />

(4.1) gives rise to a chain map η : F → R <str<strong>on</strong>g>of</str<strong>on</strong>g> U-complexes, where<br />

F = (0 → U → U ⊕d → U ⊕ ( d 2) → · · · → U<br />

⊕( d 2) → U<br />

⊕d<br />

x ′ −x<br />

−−→ U → 0)<br />

is a complex <str<strong>on</strong>g>of</str<strong>on</strong>g> finitely generated free U-modules. By Claim 1, we have isomorphisms<br />

U ⊗ A R ∼ = U ⊗ A A[t]/(f(x, t)) ∼ = U[t ′ ]/(f(x ′ , t ′ )) ∼ = U[[t ′ ]]/(f(x ′ , t ′ ))<br />

∼ = (k[[x, t, x ′ ]]/(f(x, t)))[[t ′ ]]/(f(x ′ , t ′ )) ∼ = k[[x, t, x ′ , t ′ ]]/(f(x, t), f(x ′ , t ′ )) ∼ = T.<br />

Note from [17, Exercise 10.6.2] that R ⊗ L A R is an object <str<strong>on</strong>g>of</str<strong>on</strong>g> D− (R-Mod-R) = D − (Mod R ⊗ k R).<br />

(Here, R-Mod-R denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g> (R, R)-bimodules, which can be identified with<br />

Mod R ⊗ k R.) There are isomorphisms<br />

R ⊗ L A R ∼ = F ⊗ A R<br />

∼ = (0 → U ⊗A R → (U ⊗ A R) ⊕d → · · · → (U ⊗ A R) ⊕d<br />

∼ = (0 → T → T ⊕d → · · · → T ⊕d<br />

x ′ −x<br />

−−→ T → 0) =: C<br />

x ′ −x<br />

−−→ U ⊗ A R → 0)<br />

in D − (Mod R ⊗ k R). Note that C can be regarded as an object <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod T ). Taking <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

tensor product η ⊗ A R, <strong>on</strong>e gets a chain map λ : C → S <str<strong>on</strong>g>of</str<strong>on</strong>g> T -complexes. Thus, <strong>on</strong>e has<br />

a commutative diagram<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> exact triangles in D b (mod T ).<br />

K −−−→ C −−−→ R −−−→ ΣK<br />

⏐ ⏐<br />

⏐<br />

↓ λ↓<br />

∥<br />

ξ↓<br />

I<br />

−−−→ S<br />

µ<br />

−−−→ R<br />

δ<br />

ε<br />

−−−→ ΣI<br />

Claim 3. There exists an element a ∈ W such that δ·(1 ̂⊗ a) = 0 in Hom D b (mod T )(R, ΣK).<br />

One can choose it as a n<strong>on</strong>-unit element <str<strong>on</strong>g>of</str<strong>on</strong>g> A, if necessary.<br />

Let a ∈ W be a n<strong>on</strong>-unit element <str<strong>on</strong>g>of</str<strong>on</strong>g> A as in Claim 3. Since we regard R as a T -module<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> homomorphism γ, we have an exact sequence 0 → R 1 ̂⊗ a<br />

−−→ R → R/(a) → 0.<br />

–12–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!