20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

In <str<strong>on</strong>g>the</str<strong>on</strong>g> first row <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d diagram, since L/S is in S 2 <strong>and</strong> T is in S 1 , P ′ is in<br />

(S 2 , S 1 ). Now here, it follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> (2) that P ′ is in (S 1 , S 2 ). Next, in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

middle column <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d diagram, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> short exact sequence such that P ′ is<br />

in (S 1 , S 2 ) <strong>and</strong> N/T is in S 2 . Therefore, it follows from Lemma 6 that P is in (S 1 , S 2 ).<br />

Finally, in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle column <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first diagram, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists <str<strong>on</strong>g>the</str<strong>on</strong>g> short exact sequence<br />

such that S is in S 1 <strong>and</strong> P is in (S 1 , S 2 ). C<strong>on</strong>sequently, we see that M is in (S 1 , S 2 ) by<br />

Lemma 6.<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is completed.<br />

□<br />

Corollary 8. A subcategory (S f.g. , S) is a Serre subcategory for a Serre subcategory S <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R-Mod.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let S be a Serre subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod. To prove our asserti<strong>on</strong>, it is enough to<br />

show that <strong>on</strong>e has (S, S f.g. ) ⊆ (S f.g. , S) by Theorem 7. Let M be in (S, S f.g. ). Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence 0 → Y → M → M/Y → 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where Y<br />

is in S such that M/Y is in S f.g. . It is easy to see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a finitely generated<br />

R-submodule X <str<strong>on</strong>g>of</str<strong>on</strong>g> M such that M = X + Y . Since X ⊕ Y is in (S f.g. , S) <strong>and</strong> M is a<br />

homomorphic image <str<strong>on</strong>g>of</str<strong>on</strong>g> X ⊕ Y , M is in (S f.g. , S) by Propositi<strong>on</strong> 5.<br />

□<br />

We note that a subcategory S Artin c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> Artinian R-modules is a Serre subcategory<br />

which is closed under injective hulls. (Also see [1, Example 2.4].) Therefore we<br />

can see that a subcategory (S, S Artin ) is also Serre subcategory for a Serre subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R-Mod by <str<strong>on</strong>g>the</str<strong>on</strong>g> following asserti<strong>on</strong>.<br />

Corollary 9. Let S 2 be a Serre subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> R-Mod which is closed under injective<br />

hulls. Then a subcategory (S 1 , S 2 ) is a Serre subcategory for a Serre subcategory S 1 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R-Mod.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. By Theorem 7, it is enough to show that <strong>on</strong>e has (S 2 , S 1 ) ⊆ (S 1 , S 2 ).<br />

We assume that M is in (S 2 , S 1 ) <strong>and</strong> shall show that M is in (S 1 , S 2 ). Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists<br />

a short exact sequence<br />

0 → Y → M → X → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules where X is in S 1 <strong>and</strong> Y is in S 2 . Since S 2 is closed under injective hulls, we<br />

note that <str<strong>on</strong>g>the</str<strong>on</strong>g> injective hull E R (Y ) <str<strong>on</strong>g>of</str<strong>on</strong>g> Y is also in S 2 . We c<strong>on</strong>sider a push out diagram<br />

0 −−−→ Y −−−→ M −−−→ X −−−→ 0<br />

⏐ ⏐<br />

↓ ↓ ‖<br />

0 −−−→ E R (Y ) −−−→ T −−−→ X −−−→ 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules with exact rows <strong>and</strong> injective vertical maps. The sec<strong>on</strong>d exact sequence<br />

splits, <strong>and</strong> we have an injective homomorphism M → X ⊕ E R (Y ). Since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a short<br />

exact sequence<br />

0 → X → X ⊕ E R (Y ) → E R (Y ) → 0<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> R-modules, <str<strong>on</strong>g>the</str<strong>on</strong>g> R-module X ⊕ E R (Y ) is in (S 1 , S 2 ). C<strong>on</strong>sequently, we see that M is<br />

also in (S 1 , S 2 ) by Propositi<strong>on</strong> 5.<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is completed.<br />

□<br />

–286–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!