20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

HOM-ORTHOGONAL PARTIAL TILTING MODULES<br />

FOR DYNKIN QUIVERS<br />

HIROSHI NAGASE AND MAKOTO NAGURA<br />

Abstract. We count <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes <str<strong>on</strong>g>of</str<strong>on</strong>g> basic hom-orthog<strong>on</strong>al<br />

partial tilting modules for an arbitrary Dynkin quiver. This number is independent <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> an orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> number for A n or D n -type can be expressed<br />

as a special value <str<strong>on</strong>g>of</str<strong>on</strong>g> a hypergeometric functi<strong>on</strong>. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> our <str<strong>on</strong>g>the</str<strong>on</strong>g>orem, we<br />

obtain a minimum value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> basic relative invariants <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding<br />

regular prehomogeneous vector spaces.<br />

Introducti<strong>on</strong><br />

Let Q = (Q 0 , Q 1 ) be a Dynkin quiver having n vertices (i.e., its base graph is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Dynkin diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> type A n with n ≥ 1, D n with n ≥ 4, or E n with n = 6, 7, 8), where Q 0 ,<br />

Q 1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices, arrows <str<strong>on</strong>g>of</str<strong>on</strong>g> Q, respectively. We denote by Λ = KQ its path algebra<br />

over an algebraically closed field K <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic zero, <strong>and</strong> by mod Λ <str<strong>on</strong>g>the</str<strong>on</strong>g> category <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

finitely generated right Λ-modules.<br />

Let X ∼ = ⊕ s<br />

k=1 m kX k be <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X ∈ mod Λ into indecomposable direct<br />

summ<strong>and</strong>s, where m k X k means <str<strong>on</strong>g>the</str<strong>on</strong>g> direct sum <str<strong>on</strong>g>of</str<strong>on</strong>g> m k copies <str<strong>on</strong>g>of</str<strong>on</strong>g> X k , <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> X k ’s are<br />

pairwise n<strong>on</strong>-isomorphic. Then X is called basic if m k = 1 for all indices k. We call X<br />

to be hom-orthog<strong>on</strong>al if Hom Λ (X i , X j ) = 0 for all i ≠ j. This noti<strong>on</strong> is equivalent to that<br />

X is locally semi-simple in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense <str<strong>on</strong>g>of</str<strong>on</strong>g> Shmelkin [8] when Q is a Dynkin quiver. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case where X is indecomposable, we will say that X itself is hom-orthog<strong>on</strong>al. Since Λ is<br />

hereditary, we say that X ∈ mod Λ is a partial tilting module if it satisfies Ext 1 Λ(X, X) = 0.<br />

Each X ∈ mod Λ with dimensi<strong>on</strong> vector d = dim X can be regarded as a representati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Q; that is, a point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> variety Rep(Q, d) that c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong>s with<br />

dimensi<strong>on</strong> vector d = (d (i) ) i∈Q0 ∈ Z n ≥0. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> direct product GL(d) = ∏ i∈Q 0<br />

GL(d (i) )<br />

acts naturally <strong>on</strong> Rep(Q, d); see, for example, [3, §2]. Since Λ is representati<strong>on</strong>-finite,<br />

Rep(Q, d) has a unique dense GL(d)-orbit; thus (GL(d), Rep(Q, d)) is a prehomogeneous<br />

vector space (abbreviated PV). It follows from <str<strong>on</strong>g>the</str<strong>on</strong>g> Artin–Voigt <str<strong>on</strong>g>the</str<strong>on</strong>g>orem [3, Theorem<br />

4.3] that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> that X is a partial tilting module can be interpreted to that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> GL(d)-orbit c<strong>on</strong>taining X is dense in Rep(Q, d); On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong><br />

that X is hom-orthog<strong>on</strong>al corresp<strong>on</strong>ds to that <str<strong>on</strong>g>the</str<strong>on</strong>g> isotropy subgroup (or, stabilizer) at<br />

X ∈ Rep(Q, d) is reductive. Therefore we are interested in hom-orthog<strong>on</strong>al partial tilting<br />

Λ-modules, because <str<strong>on</strong>g>the</str<strong>on</strong>g>y corresp<strong>on</strong>d to generic points <str<strong>on</strong>g>of</str<strong>on</strong>g> regular PVs associated with Q;<br />

see [5, Theorem 2.28].<br />

In this paper, we count up <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isomorphic classes <str<strong>on</strong>g>of</str<strong>on</strong>g> basic hom-orthog<strong>on</strong>al<br />

partial tilting Λ-modules for an arbitrary Dynkin quiver Q. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, this is nothing<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper has been submitted for publicati<strong>on</strong> elsewhere.<br />

–125–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!