20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

not hold for all modules with bounded Betti numbers so <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> module<br />

is simple, is essential.<br />

We would also like to menti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following facts. Let C be an Ω-perfect module. Then<br />

it is easy to show that τC is also Ω-perfect. Let now B be an indecomposable module,<br />

<strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an irreducible m<strong>on</strong>omorphism B → C. Then it was shown in<br />

[17] that B must also be Ω-perfect. We would like to know <str<strong>on</strong>g>the</str<strong>on</strong>g> answer to <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

questi<strong>on</strong>:<br />

Questi<strong>on</strong> 5. Let B <strong>and</strong> C be two indecomposable R-modules, let B → C be an irreducible<br />

epimorphism <strong>and</strong> assume C is Ω-perfect. Is B also Ω-perfect?<br />

We will first look at Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ents c<strong>on</strong>taining modules that are not eventually<br />

Ω-perfect since this is <str<strong>on</strong>g>the</str<strong>on</strong>g> much easier case. We will show that <str<strong>on</strong>g>the</str<strong>on</strong>g>se comp<strong>on</strong>ents<br />

must have a very predictable shape. First, we recall <str<strong>on</strong>g>the</str<strong>on</strong>g> following definiti<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem,<br />

see [19].<br />

Definiti<strong>on</strong>. Let R be an artin algebra <strong>and</strong> let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> its Ausl<strong>and</strong>er-<br />

Reiten quiver. A functi<strong>on</strong> d: C s → Q is additive if it satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g> following properties:<br />

(a) d(C) > 0 for each C ∈ C s .<br />

(b) 2d(C) = ∑ i d(E i) for each indecomposable n<strong>on</strong> projective module C, where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sequence 0 → τC → ⊕ i E i<br />

⊕ P → C → 0 is an Ausl<strong>and</strong>er-Reiten sequence <strong>and</strong> P is a<br />

(possibly 0) projective R-module.<br />

(c) d(C) = d(τC) for each C ∈ C s .<br />

The following <str<strong>on</strong>g>the</str<strong>on</strong>g>orem was proved by Happel-Preiser-<strong>Ring</strong>el in [19]:<br />

Theorem 6. Let R be an artin algebra over an algebraically closed field <strong>and</strong> let C s be<br />

a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> its Ausl<strong>and</strong>er-Reiten quiver. Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an additive<br />

functi<strong>on</strong> <strong>on</strong> C s . Then <str<strong>on</strong>g>the</str<strong>on</strong>g> tree class <str<strong>on</strong>g>of</str<strong>on</strong>g> C s is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r an extended Dynkin diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> type<br />

à n , ˜D n , Ẽ6, Ẽ7, Ẽ8, or an infinite Dynkin tree <str<strong>on</strong>g>of</str<strong>on</strong>g> type A ∞ , D ∞ or A ∞ ∞.<br />

Assume that a n<strong>on</strong>-periodic stable comp<strong>on</strong>ent C s c<strong>on</strong>tains a module C that is not eventually<br />

Ω-perfect. This means that some syzygy <str<strong>on</strong>g>of</str<strong>on</strong>g> C is a simple periodic module. Let<br />

us denote that module by S, <strong>and</strong> let n be <str<strong>on</strong>g>the</str<strong>on</strong>g> Ω-period <str<strong>on</strong>g>of</str<strong>on</strong>g> S. It is clear that S is also<br />

ν-periodic since <str<strong>on</strong>g>the</str<strong>on</strong>g> Nakayama functor preserves lengths, so let m denote <str<strong>on</strong>g>the</str<strong>on</strong>g> ν-period <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

S. Let T = S ⊕ ΩS ⊕ . . . ⊕ Ω n−1 S, <strong>and</strong> let W = T ⊕ νT ⊕ . . . ⊕ ν m−1 T . It is now immediate<br />

that τW = W . Also, it is not hard to show that <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> d: C s → Q given by<br />

d(M) = dimHom R (W, M) is an additive functi<strong>on</strong>, see [13, 20]. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> Happel-Preiser-<br />

<strong>Ring</strong>el <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> above observati<strong>on</strong>s we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following surprising applicati<strong>on</strong><br />

(see [20]):<br />

Theorem 7. Let R be a selfinjective algebra <strong>and</strong> let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten quiver <str<strong>on</strong>g>of</str<strong>on</strong>g> R c<strong>on</strong>taining a module that is not eventually Ω-perfect. Assume<br />

in additi<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent is not τ-periodic. Then C s is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form Z∆ where<br />

∆ is <str<strong>on</strong>g>of</str<strong>on</strong>g> type Ãn, ˜D n , Ẽ6, Ẽ7, Ẽ8, or an infinite Dynkin tree <str<strong>on</strong>g>of</str<strong>on</strong>g> type D ∞ or A ∞ ∞. □<br />

We should make a few remarks here. First, note <str<strong>on</strong>g>the</str<strong>on</strong>g> excluded case when <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ent<br />

is τ-periodic is also well understood. They are ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r infinite tubes or <str<strong>on</strong>g>the</str<strong>on</strong>g>y are periodic<br />

comp<strong>on</strong>ents whose tree class is a Dynkin diagram (see [19, 26]). Note also that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

–79–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!