20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

(3) P is a maximal σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M(i.e. P f ↠ M is σ-coessential extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M <strong>and</strong> if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an epimorphism I h ↠ P <strong>and</strong> I h ↠ P ↠ M is σ-coessential <str<strong>on</strong>g>of</str<strong>on</strong>g> M,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n h is an isomorphism.).<br />

(4) P is isomorphic to P σ (M).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1)→(2): Let P be σ-projective <strong>and</strong> P ↠ f M be a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M.<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following diagram.<br />

0→ ker h → P → h I → 0<br />

↘ f ↓ g<br />

M,<br />

where I is σ-projective, g <strong>and</strong> h are epimorphisms such that gh = f.<br />

Since F σ ∋ f −1 (0) = h −1 (g −1 (0)) ⊇ h −1 (0), it follows that F σ ∋ h −1 (0) = ker h. As f is<br />

a minimal epimorphism <strong>and</strong> g is an epimorphism, h is also a minimal epimorphism. Since<br />

I is σ-projective, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a submodule L <str<strong>on</strong>g>of</str<strong>on</strong>g> P such that P = ker h ⊕ L <strong>and</strong> L ∼ = I.<br />

As ker h is small in P , P = L, <strong>and</strong> so P ∼ = I.<br />

(2)→(1): Let σ be an epi-preserving idempotent radical <strong>and</strong> P be a minimal σ-<br />

projective extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram.<br />

P σ (P ) → j P → 0<br />

g ↓ ↓ f<br />

P σ (M) → h M → 0,<br />

where h <strong>and</strong> j are epimorphisms associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> projective covers <str<strong>on</strong>g>of</str<strong>on</strong>g> M <strong>and</strong> P<br />

respectively <strong>and</strong> g is an induced epimorphism by <str<strong>on</strong>g>the</str<strong>on</strong>g> σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (P ). Since P is<br />

σ-projective, j is an isomorphism by Lemma 4. As P σ (P ) <strong>and</strong> P σ (M) are σ-projective,<br />

g is an isomorphism by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>. By Lemma 1, it follows that P → f M → 0 is a<br />

σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M.<br />

(1)→(3): Let I → g P be an epimorphism. Let P ↠ f M <strong>and</strong> I ↠ h M be σ-coessential<br />

extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> M such that fg = h. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following exact diagram.<br />

I<br />

g ↙ ↓ h<br />

P → M → 0<br />

f<br />

Since f is a minimal epimorphism, g is an epimorphim. As h <strong>and</strong> f are minimal<br />

epimorphisms, g is a minimal epimorphim. Since F σ ∋ h −1 (0) = g −1 (f −1 (0)) ⊇ g −1 (0), it<br />

follows that F σ ∋ g −1 (0). Since P is σ-projective, 0 → ker g → I → g P → 0 splits, <strong>and</strong> so<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a submodule H <str<strong>on</strong>g>of</str<strong>on</strong>g> I such that H ∼ = P <strong>and</strong> I = ker g ⊕ H. As ker g is small<br />

in I, I = H ∼ = P , as desired.<br />

(3)→(1): We show that P is σ-projective. Since P ↠ f M is a σ-coessential extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>, an induced morphism P σ (P ) → P σ (M) is an isomorphism by<br />

Lemma 1. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following commutative diagram.<br />

P σ (P ) → P → 0<br />

↓ ↓<br />

P σ (M) → M → 0.<br />

–212–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!