20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

We say that a subclass C <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R is closed under taking F σ -factor modules if : if M ∈ C<br />

<strong>and</strong> N is a σ-torsi<strong>on</strong>free submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> M <str<strong>on</strong>g>the</str<strong>on</strong>g>n M/N ∈ C.<br />

2. COSTABLE TORSION THEORY<br />

Lemma 1. Let σ be an idempotent radical. For a module M <strong>and</strong> its submodule N,<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following diagram with exact rows.<br />

0 → K σ (M) → P σ (M)<br />

f<br />

→ M → 0<br />

↓ j<br />

0 → K σ (M/N) → P σ (M/N) →<br />

g<br />

M/N → 0,<br />

where f <strong>and</strong> g are epimorphisms associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> σ-projective covers <strong>and</strong> j is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

can<strong>on</strong>ical epimorphism. Since g is a minimal epimorphism, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an epimorphism<br />

h : P σ (M) → P σ (M/N) induced by <str<strong>on</strong>g>the</str<strong>on</strong>g> σ-projectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M) such that jf = gh. Then<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> following c<strong>on</strong>diti<strong>on</strong>s hold.<br />

(1) If M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M/N, <str<strong>on</strong>g>the</str<strong>on</strong>g>n h : P σ (M) → P σ (M/N) is an<br />

isomorphism.<br />

(2) Moreover if σ is epi-preserving <strong>and</strong> h : P σ (M) → P σ (M/N) is an isomorphism,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M/N.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. (1): Let N ∈ F σ be a small submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M. Since jf is an epimorphism<br />

<strong>and</strong> g is a minimal epimorphism, h is also an epimorphism. Since j(f(ker h)) =<br />

g(h(ker h)) = g(0) = 0, it follows that f(ker h) ⊆ ker j = N ∈ F σ , <strong>and</strong> so f(ker h) ∈ F σ .<br />

Let f| ker h be <str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> f to ker h. Then it follows that ker(f| ker h ) = ker h∩ker f =<br />

ker h ∩ K σ (M) ⊆ K σ (M) ∈ F σ . C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequence 0 → ker f| ker h → ker h →<br />

f(ker h) → 0. Since F σ is closed under taking extensi<strong>on</strong>s, it follows that ker h ∈ F σ . As<br />

P σ (M/N) is σ-projective, <str<strong>on</strong>g>the</str<strong>on</strong>g> exact sequence 0 → ker h → P σ (M) → P σ (M/N) → 0<br />

splits, <strong>and</strong> so <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a submodule L <str<strong>on</strong>g>of</str<strong>on</strong>g> P σ (M) such that P σ (M) = L ⊕ ker h. So<br />

it follows that f(P σ (M)) = f(L) + f(ker h). As f(ker h) ⊆ N <strong>and</strong> f(P σ (M)) = M,<br />

M = f(L) + N. Since N is small in M, it follows that M = f(L). As f is a minimal<br />

epimorphism, it follows that P σ (M) = L <strong>and</strong> ker h = 0, <strong>and</strong> so h : P σ (M) ≃ P σ (M/N),<br />

as desired.<br />

(2): Suppose that h : P σ (M) ≃ P σ (M/N). By <str<strong>on</strong>g>the</str<strong>on</strong>g> commutativity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above diagram<br />

with h, it follows that h(f −1 (N)) ⊆ K σ (M/N) ∈ F σ . Since h is an isomorphism, f −1 (N) ∈<br />

F σ . As f| f −1 (N) : f −1 (N) → N → 0 <strong>and</strong> σ is an epi-preserving preradical, it follows that<br />

N ∈ F σ . Next we will show that N is small in M. Let K be a submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> M<br />

such that M = N + K. If f −1 (K) P σ (M), <str<strong>on</strong>g>the</str<strong>on</strong>g>n h(f −1 (K)) P σ (M/N) as h is an<br />

isomorphism. Since g(h(f −1 (K))) = j(f(f −1 (K))) = j(K) = (K + N)/N = M/N <strong>and</strong> g<br />

is a minimal epimorphism, this is a c<strong>on</strong>tradicti<strong>on</strong>. Thus it holds that f −1 (K) = P σ (M),<br />

<strong>and</strong> so K = f(f −1 (K)) = f(P σ (M)) = M. Thus it follows that N is small in M. □<br />

We call a preradical t σ-costable if F t is closed under taking σ-projective covers. Now<br />

we characterize σ-costable preradicals.<br />

Theorem 2. Let t be a radical <strong>and</strong> σ be an idempotent radical. C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

(1) t is σ-costable.<br />

–209–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!