20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Let us briefly note how this paper is organized. We shall prove Theorem 1 in Secti<strong>on</strong> 2.<br />

Theorem 2 will be proven in Secti<strong>on</strong> 4. Secti<strong>on</strong> 3 is devoted to some preliminary steps for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2. We will closely study in Secti<strong>on</strong> 3 <str<strong>on</strong>g>the</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g> when e 2 Q (A) = 0<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where dim A = 2.<br />

In what follows, unless o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise specified, for each m-primary ideal I in A, we put<br />

R(I) = A[It], R ′ (I) = A[It, t −1 ], <strong>and</strong> G(I) = R ′ (I)/t −1 R ′ (I),<br />

where t is an indeterminate over A. Let M = mR + R + be <str<strong>on</strong>g>the</str<strong>on</strong>g> unique graded maximal<br />

ideal in R = R(I). We denote by H i M (∗) (i ∈ Z) <str<strong>on</strong>g>the</str<strong>on</strong>g> ith local cohomology functor <str<strong>on</strong>g>of</str<strong>on</strong>g> R(I)<br />

with respect to M. Let L be a graded R-module. For each n ∈ Z let [H i M (L)] n st<strong>and</strong><br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> homogeneous comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> H i M (L) with degree n. We denote by L(α), for each<br />

α ∈ Z, <str<strong>on</strong>g>the</str<strong>on</strong>g> graded R-module whose grading is given by [L(α)] n = L α+n for all n ∈ Z.<br />

2. Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1<br />

In this secti<strong>on</strong>, we shall prove Theorem 1.<br />

The heart <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (1) ⇒ (2) is, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where A is a<br />

generalized Cohen-Macaulay ring, <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> uniform bounds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Castelnuovo-<br />

Mumford regularity reg G(Q) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> associated graded rings G(Q) <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter ideals Q.<br />

So, let us briefly recall <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Castelnuovo-Mumford regularity.<br />

Let Q be a parameter ideal in A <strong>and</strong> let<br />

R(Q) = A[Qt], R ′ (Q) = A[Qt, t −1 ], <strong>and</strong> G(Q) = R ′ (Q)/t −1 R ′ (Q)<br />

respectively, denote <str<strong>on</strong>g>the</str<strong>on</strong>g> Rees algebra, <str<strong>on</strong>g>the</str<strong>on</strong>g> extended Rees algebra, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> associated<br />

graded ring <str<strong>on</strong>g>of</str<strong>on</strong>g> Q. Let M = mR + R + be <str<strong>on</strong>g>the</str<strong>on</strong>g> unique graded maximal ideal in R = R(Q).<br />

For each i ∈ Z let<br />

a i (G(Q)) = max{n ∈ Z | [H i M(G(Q))] n ≠ (0)}<br />

<strong>and</strong> put<br />

regG(Q) = max{a i (G(Q)) + i | i ∈ Z},<br />

which we call <str<strong>on</strong>g>the</str<strong>on</strong>g> Castelnuovo-Mumford regularity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> graded ring G(Q).<br />

Let us now note <str<strong>on</strong>g>the</str<strong>on</strong>g> following result <str<strong>on</strong>g>of</str<strong>on</strong>g> Linh <strong>and</strong> Trung [8], which gives a uniform bound<br />

for reg G(Q) for parameter ideals Q in a generalized Cohen-Macaulay ring.<br />

Theorem 3 ([8], Theorem 2.3). Suppose that A is a generalized Cohen-Macaulay ring<br />

<strong>and</strong> let Q be a parameter ideal in A. Then<br />

(1) reg G(Q) ≤ max{I(A) − 1, 0}, if d = 1.<br />

(2) reg G(Q) ≤ max{(4I(A)) (d−1)! − I(A) − 1, 0}, if d ≥ 2.<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> following result is <str<strong>on</strong>g>the</str<strong>on</strong>g> key for our pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong> (1) ⇒ (2) in<br />

Theorem 1, where h i (A) = l A (H i m(A)) <strong>and</strong> I(A) = ∑ d−1<br />

)<br />

j=0 h j (A).<br />

Theorem 4. Suppose that A is a generalized Cohen-Macaulay ring. Let Q be a parameter<br />

ideal in A <strong>and</strong> put r = reg G(Q). Then<br />

(1) |e 1 Q (A)| ≤ I(A).<br />

(2) |e i Q (A)| ≤ 3 · 2i−2 (r + 1) i−1 I(A) for 2 ≤ i ≤ d.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. See [5, Secti<strong>on</strong> 2].<br />

–156–<br />

( d−1<br />

j<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!