20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

We give here an outline <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) ⇒ (2) : By Theorem 14, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an exact sequence<br />

0 → Z (φ ψ)<br />

−→ (R m ⊕ M) ⊕ Z → (R n ⊕ N) → 0,<br />

where ψ is nilpotent. In such a case Z ia a Cohen-Macaulay module as well. Then<br />

c<strong>on</strong>verting this into a triangle in CM(R), <strong>and</strong> noting that <str<strong>on</strong>g>the</str<strong>on</strong>g> nilpotency <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ ∈ End R (Z)<br />

forces <str<strong>on</strong>g>the</str<strong>on</strong>g> nilpotency <str<strong>on</strong>g>of</str<strong>on</strong>g> ψ ∈ End R (Z), we can see that (2) holds. ✷<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2) ⇒ (3): Suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a triangle Z (φ ψ)<br />

−→ M ⊕ Z → N → Z[1],<br />

where ψ is nilpotent. Then we have a triangle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form;<br />

Z ⊗ k V ( t+ψ)<br />

φ<br />

−→ M ⊗ k V ⊕ Z ⊗ k V −→ Q −→ Z ⊗ k V [1],<br />

for a Q ∈ CM(R ⊗ k V ). Note L(t + ψ) is an isomorphism in CM(R ⊗ k K). Thus<br />

L(Q) ∼ = L(M ⊗ k V ) = M ⊗ k K. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, since R(t + ψ) = ψ, R(Q) ∼ = N.<br />

Thus M stably degenerates to N. ✷<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (3) ⇒ (1) when dim R = 0: In this pro<str<strong>on</strong>g>of</str<strong>on</strong>g> we assume dim R = 0. Suppose that<br />

M stably degenerates to N. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a Q ∈ CM(R ⊗ k V ) with L(Q) ∼ = M ⊗ k K<br />

<strong>and</strong> R(Q) ∼ = N. By definiti<strong>on</strong>, we have isomorphisms Q t ⊕ P 1<br />

∼ = (M ⊗k K) ⊕ P 2 in<br />

CM(R ⊗ k K) for some projective R ⊗ k K-modules P 1 , P 2 , <strong>and</strong> Q/tQ ⊕ R a ∼ = N ⊕ R<br />

b<br />

in CM(R) for some a, b ∈ N. Since R ⊗ k K is a local ring, P 1 <strong>and</strong> P 2 are free. Thus<br />

Q t ⊕ (R ⊗ k K) c ∼ = (M ⊗k K) ⊕ (R ⊗ k K) d for some c, d ∈ N. Setting ˜Q = Q ⊕ (R ⊗ k V ) a+c ,<br />

we have isomorphisms<br />

˜Q t<br />

∼ = (M ⊕ R a+d ) ⊗ k K, ˜Q/t ˜Q ∼ = N ⊕ R b+c .<br />

Since ˜Q is V -flat, M ⊕ R a+d degenerates to N ⊕ R b+c . ✷<br />

The difficult part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is to show <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong>s (3) ⇒ (4) <strong>and</strong> (3) ⇒ (2).<br />

Actually it is technically difficult to show <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a Cohen-Macaulay module Z<br />

<strong>and</strong> X in each case. To get over this difficulty, we use <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma called Swan’s<br />

Lemma in Algebraic K-<strong>Theory</strong>.<br />

Lemma 30. [8, Lemma 5.1] Let R be a noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring <strong>and</strong> t a variable. Assume that an<br />

R[t]-module L is a submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> W ⊗ R R[t] with W being a finitely generated R-module.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an exact sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> R[t]-modules;<br />

0 −−−→ X ⊗ R R[t] −−−→ Y ⊗ R R[t] −−−→ L −−−→ 0,<br />

where X <strong>and</strong> Y are finitely generated R-modules.<br />

By virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> Swan’s lemma we can prove <str<strong>on</strong>g>the</str<strong>on</strong>g> following propositi<strong>on</strong> that will play an<br />

essential role in <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 29.<br />

Propositi<strong>on</strong> 31. Let R be a Gorenstein local k-algebra, where k is an infinite field.<br />

Suppose we are given a Cohen-Macaulay R ⊗ k V -module P ′ satisfying that <str<strong>on</strong>g>the</str<strong>on</strong>g> localizati<strong>on</strong><br />

–279–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!