20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

WEAKLY CLOSED GRAPH<br />

KAZUNORI MATSUDA<br />

Abstract. We introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak closedness for c<strong>on</strong>nected simple graphs.<br />

This noti<strong>on</strong> is a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> closedness introduced by Herzog-Hibi-Hreindóttir-<br />

Kahle-Rauh. We give a characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weakly closed graphs <strong>and</strong> prove that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

binomial edge ideal J G is F -pure for weakly closed graph G.<br />

Key Words:<br />

binomial edge ideal, F-purity, weakly closed graph.<br />

2000 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: 05C25, 05E40, 13A35, 13C05.<br />

1. Introducti<strong>on</strong><br />

This article is based <strong>on</strong> [6].<br />

Throughout this article, let k be an F -finite field <str<strong>on</strong>g>of</str<strong>on</strong>g> positive characteristic. Let G be<br />

a graph <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex set V (G) = [n] with edge set E(G). We assume that a graph G<br />

is always c<strong>on</strong>nected <strong>and</strong> simple, that is, G is c<strong>on</strong>nected <strong>and</strong> has no loops <strong>and</strong> multiple<br />

edges. And <str<strong>on</strong>g>the</str<strong>on</strong>g> term “labeling” means numbering <str<strong>on</strong>g>of</str<strong>on</strong>g> V (G) from 1 to n.<br />

For each graph G, we call J G := ([i, j] = X i Y j − X j Y i | {i, j} ∈ E(G)) <str<strong>on</strong>g>the</str<strong>on</strong>g> binomial<br />

edge ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> G (see [4], [8]). J G is an ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> S := k[X 1 , . . . , X n , Y 1 , . . . , Y n ].<br />

2. Weakly closed graph<br />

In this secti<strong>on</strong>, we give <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weakly closed graphs <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> first main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter, which is a characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weakly closed graphs.<br />

Until we define <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak closedness, we fix a graph G <strong>and</strong> a labeling <str<strong>on</strong>g>of</str<strong>on</strong>g> V (G).<br />

Let (a 1 , . . . , a n ) be a sequence such that 1 ≤ a i ≤ n <strong>and</strong> a i ≠ a j if i ≠ j.<br />

Definiti<strong>on</strong> 1. We say that a i is interchangeable with a i+1 if {a i , a i+1 } ∈ E(G). And we<br />

call <str<strong>on</strong>g>the</str<strong>on</strong>g> following operati<strong>on</strong> {a i , a i+1 }-interchanging :<br />

(a 1 , . . . , a i−1 , a i , a i+1 , a i+2 , . . . , a n ) → (a 1 , . . . , a i−1 , a i+1 , a i , a i+2 , . . . , a n )<br />

Definiti<strong>on</strong> 2. Let {i, j} ∈ E(G). We say that i is adjacentable with j if <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

asserti<strong>on</strong> holds: for a sequence (1, 2, . . . , n), by repeating interchanging, <strong>on</strong>e can find a<br />

sequence (a 1 , . . . , a n ) such that a k = i <strong>and</strong> a k+1 = j for some k.<br />

Example 3. About <str<strong>on</strong>g>the</str<strong>on</strong>g> following graph G, 1 is adjacentable with 4:<br />

1 2<br />

3<br />

4 <br />

<br />

The detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–99–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!