20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

As cyclic codes, polycyclic codes may be understood in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> ideals in quotient<br />

rings <str<strong>on</strong>g>of</str<strong>on</strong>g> polynomial rings. Given c = (c 0 , c 1 , · · · , c n−1 ) ∈ R n , if we let f(X) = X n −<br />

c(X), where c(X) = c n−1 X n−1 + · · · + c 1 X + c 0 <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> R-module homomorphism ρ :<br />

R n → R[X]/(f(X)) sending <str<strong>on</strong>g>the</str<strong>on</strong>g> vector a = (a 0 , a 1 , · · · , a n−1 ) to <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalence class <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

polynomial a n−1 X n−1 + · · · + a 1 X + a 0 , allows us to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> polycyclic codes induced<br />

by c with <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R[X]/(f(X)).<br />

Definiti<strong>on</strong> 2. Let C be a polycyclic code in R[X]/(f(X)). If <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist m<strong>on</strong>ic polynomials<br />

g <strong>and</strong> h such that ρ(C) = (g)/(f) <strong>and</strong> f = hg, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C is called a principal polycyclic<br />

code.<br />

Propositi<strong>on</strong> 3. A code C ⊆ R n is a principal polycyclic code induced by some c ∈ C if<br />

<strong>and</strong> <strong>on</strong>ly if C is a free R-module <strong>and</strong> has a k × n generator matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

⎛<br />

⎞<br />

g 0 g 1 · · · g n−k 0 · · · 0<br />

0 g 0 g 1 · · · g n−k · · · 0<br />

.<br />

G =<br />

0 .. . .. . .. . .. . .. 0<br />

⎜<br />

⎟<br />

⎝ .<br />

. ⎠<br />

0 · · · 0 g 0 g 1 · · · g n−k<br />

with an invertible g n−k . In this case<br />

)<br />

ρ(C) =<br />

(g n−k X n−k + · · · + g 1 X + g 0<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> R[X]/(f(X)).<br />

Definiti<strong>on</strong> 4. Let C = (g)/(f) ⊆ R[X]/(f(X)) be a principal polycyclic code. If <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>stant term <str<strong>on</strong>g>of</str<strong>on</strong>g> g is invertible, <str<strong>on</strong>g>the</str<strong>on</strong>g>n C is called a principal polycyclic code with an<br />

invertible c<strong>on</strong>stant term.<br />

For a c = (c 0 , c 1 , · · · , c n−1 ) ∈ R n , let D c be <str<strong>on</strong>g>the</str<strong>on</strong>g> following square matrix;<br />

⎛<br />

⎞<br />

0 1 0<br />

.<br />

D c = ⎜ ..<br />

⎟<br />

⎝ 0 1 ⎠ .<br />

c 0 c 1 · · · c n−1<br />

It follows that a code C ⊆ R n is polycyclic with an associated vector c ∈ R n if <strong>and</strong><br />

<strong>on</strong>ly if it is invariant under right multiplicati<strong>on</strong> by D c .<br />

3. Sequential codes<br />

Definiti<strong>on</strong> 5. Let C be a linear code <str<strong>on</strong>g>of</str<strong>on</strong>g> length n over R. C is a sequential code induced by<br />

c if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a vector c = (c 0 , c 1 , · · · , c n−1 ) ∈ R n such that for every (a 0 , a 1 , · · · , a n−1 ) ∈<br />

C, (a 1 , a 2 , · · · , a n−1 , a 0 c 0 + a 1 c 1 + · · · + a n−1 c n−1 ) ∈ C. In this case we call c an associated<br />

vector <str<strong>on</strong>g>of</str<strong>on</strong>g> C.<br />

Let C be a sequential code with an associated vector c = (c 0 , c 1 , · · · , c n−1 ). Then C is<br />

invariant under right multiplicati<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix<br />

–107–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!