20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The first <strong>and</strong> last points were already proved in [8]. Here’s <strong>on</strong>e way to see <str<strong>on</strong>g>the</str<strong>on</strong>g> first point.<br />

We know from (2.3) that soc( R R) is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix modules M mi ×s i<br />

(F qi ). If m i ≥ s i for<br />

all i, <str<strong>on</strong>g>the</str<strong>on</strong>g>n each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> M mi ×s i<br />

(F qi ) would admit a generating character, by Theorem 13. By<br />

adding <str<strong>on</strong>g>the</str<strong>on</strong>g>se generating characters, <strong>on</strong>e would obtain a generating character for soc( R R)<br />

itself. Then, by Propositi<strong>on</strong> 14, R would admit a generating character, <strong>and</strong> hence would<br />

be Frobenius by Theorem 5.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> third point, c<strong>on</strong>sider counter-examples C 1 , C 2 ⊂ A n to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet A with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight. Because A n ⊂ soc( R R) n ⊂ R R n ,<br />

C 1 , C 2 can also be viewed as R-modules via (2.1). The Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> an element<br />

x <str<strong>on</strong>g>of</str<strong>on</strong>g> A n equals <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> x c<strong>on</strong>sidered as an element <str<strong>on</strong>g>of</str<strong>on</strong>g> R n , because <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Hamming weight just depends up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> entries <str<strong>on</strong>g>of</str<strong>on</strong>g> x being zero or not. In this way, C 1 , C 2<br />

will also be counter-examples to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property for <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet R with respect<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight.<br />

Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> key step remaining is <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d point in <str<strong>on</strong>g>the</str<strong>on</strong>g> strategy. An explicit c<strong>on</strong>structi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> counter-examples to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property for <str<strong>on</strong>g>the</str<strong>on</strong>g> alphabet A = M m×k (F q ),<br />

m < k, was given in [32]. Here, we give a short existence pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; more details are available<br />

in [32] <strong>and</strong> [33].<br />

Let R = M m (F q ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> ring <str<strong>on</strong>g>of</str<strong>on</strong>g> m × m matrices over F q . Let A = M m×k (F q ), with<br />

m < k; A is a left R-module. It is clear from Theorem 36 that A will fail to have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight if we can find a finite left R-<br />

module M with dim Q F 0 (O ♯ , Q) > dim Q F 0 (O, Q). It turns out that this inequality will<br />

hold for any n<strong>on</strong>zero M.<br />

Because R is simple, any finite left R-module M has <str<strong>on</strong>g>the</str<strong>on</strong>g> form M = M m×l (F q ), for some<br />

l. First, let us determine O, which is <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> left U-orbits <strong>on</strong> M. The group U is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

group <str<strong>on</strong>g>of</str<strong>on</strong>g> units <str<strong>on</strong>g>of</str<strong>on</strong>g> R, which is precisely <str<strong>on</strong>g>the</str<strong>on</strong>g> general linear group GL m (F q ). The left orbits<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> GL m (F q ) <strong>on</strong> M = M m×l (F q ) are represented by <str<strong>on</strong>g>the</str<strong>on</strong>g> row reduced echel<strong>on</strong> matrices 1 over<br />

F q <str<strong>on</strong>g>of</str<strong>on</strong>g> size m × l.<br />

Now, let us determine O ♯ , which is <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> right Aut(A)-orbits <strong>on</strong> Hom R (M, A). The<br />

automorphism group Aut(A) equals GL k (F q ), acting <strong>on</strong> A = M m×k (F q ) by right matrix<br />

multiplicati<strong>on</strong>. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, Hom R (M, A) = M l×k (F q ), again using right matrix<br />

multiplicati<strong>on</strong>. Thus O ♯ c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> right orbits <str<strong>on</strong>g>of</str<strong>on</strong>g> GL k (F q ) acting <strong>on</strong> M l×k (F q ). These<br />

orbits are represented by <str<strong>on</strong>g>the</str<strong>on</strong>g> column reduced echel<strong>on</strong> matrices over F q <str<strong>on</strong>g>of</str<strong>on</strong>g> size l × k.<br />

Because <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix transpose interchanges row reduced echel<strong>on</strong> matrices <strong>and</strong> column<br />

reduced echel<strong>on</strong> matrices, we see that |O ♯ | > |O| if <strong>and</strong> <strong>on</strong>ly if k > m (for any positive l).<br />

Finally, notice that dim Q F 0 (O ♯ , Q) = |O ♯ |−1 <strong>and</strong> dim Q F 0 (O, Q) = |O|−1. Thus, for any<br />

n<strong>on</strong>zero module M, dim Q F 0 (O ♯ , Q) > dim Q F 0 (O, Q) if <strong>and</strong> <strong>on</strong>ly if m < k. C<strong>on</strong>sequently,<br />

if m < k, <str<strong>on</strong>g>the</str<strong>on</strong>g>n W fails to be injective <strong>and</strong> A fails to have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with<br />

respect to Hamming weight.<br />

5.5. Technical Remarks. Here is <str<strong>on</strong>g>the</str<strong>on</strong>g> technical argument regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> zero functi<strong>on</strong>al<br />

needed to justify Theorem 34.<br />

Remark 37. For η ∈ F (O ♯ , N), define <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> η to be l(η) = ∑ λ∈O<br />

η(λ) <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

♯<br />

essential length <str<strong>on</strong>g>of</str<strong>on</strong>g> η to be l 0 (η) = ∑ λ≠0<br />

η(λ). The length l(η) equals <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

1 Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Yamagata tells me that <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese name for this c<strong>on</strong>cept translates literally as “step matrices.”<br />

–241–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!