20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(1) Q ′ is a quiver obtained from Q by <str<strong>on</strong>g>the</str<strong>on</strong>g> following changes.<br />

• Replace each arrow a : k → v in Q by a new arrow a ∗ : v → k.<br />

• Replace each arrow b : u → k in Q by a new arrow b ∗ : k → u.<br />

• For each pair <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows u b → k a → v, add a new arrow [ba] : u → v<br />

(2) W ′ = [W ] + ∆ is defined as follows.<br />

• [W ] is obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> potential W by replacing all compositi<strong>on</strong>s ba by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

new arrows [ba]<br />

∑<br />

for each pair <str<strong>on</strong>g>of</str<strong>on</strong>g> arrows u → b k → a v.<br />

• ∆ = [ba]a ∗ b ∗ .<br />

a,b∈Q 1<br />

e(b)=k=s(a)<br />

2.2. Truncated Jacobian algebras. We introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cuts <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> truncated<br />

Jacobian algebras.<br />

Definiti<strong>on</strong> 4. [14] Let (Q, W ) be a QP. A subset C ⊂ Q 1 is called a cut if each cycle<br />

appearing W c<strong>on</strong>tains exactly <strong>on</strong>e arrow <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Then we define <str<strong>on</strong>g>the</str<strong>on</strong>g> truncated Jacobian<br />

algebra by<br />

P(Q, W, C) := P(Q, W )/〈C〉 = ̂KQ C /〈∂ c W | c ∈ C〉,<br />

where Q C is <str<strong>on</strong>g>the</str<strong>on</strong>g> subquiver <str<strong>on</strong>g>of</str<strong>on</strong>g> Q with vertex set Q 0 <strong>and</strong> arrow set Q 1 \ C.<br />

Then, we can naturally define a QP with a cut from a given algebra as follows.<br />

Definiti<strong>on</strong> 5. [16] Let Q be a finite c<strong>on</strong>nected quiver <strong>and</strong> Λ = ̂KQ/〈R〉 be a finite<br />

dimensi<strong>on</strong>al algebra with a minimal set <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>s.<br />

Then we define a QP (Q Λ , W Λ ) as follows:<br />

(1) (Q Λ ) 0 = Q 0<br />

(2) (Q Λ ) 1 = Q 1<br />

∐<br />

CΛ , where C Λ := {ρ r : e(r) → s(r) | r ∈ R}.<br />

(3) W Λ = ∑ r∈Rρ r r.<br />

Then <str<strong>on</strong>g>the</str<strong>on</strong>g> set C Λ gives a cut <str<strong>on</strong>g>of</str<strong>on</strong>g> (Q Λ , W Λ ).<br />

2.3. APR tilting modules. We call a Λ-module T tilting module if proj.dim Λ T ≤ 1,<br />

Ext 1 Λ(T, T ) = 0, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a short exact sequence 0 → Λ → T 0 → T 1 → 0 with<br />

T 0 , T 1 in addT .<br />

Definiti<strong>on</strong> 6. Let Λ be a basic finite dimensi<strong>on</strong>al algebra <strong>and</strong> P k be a simple projective<br />

n<strong>on</strong>-injective Λ-module associated with a source k <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quiver Λ. Then Λ-module<br />

T := τ − P k ⊕ Λ/P k is called an APR tilting module, where τ − denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Ausl<strong>and</strong>er-Reiten translati<strong>on</strong>.<br />

3. Main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem<br />

3.1. Main result. Let Q be a finite c<strong>on</strong>nected quiver <strong>and</strong> Λ = ̂KQ/〈R〉 be a finite<br />

dimensi<strong>on</strong>al algebra with a minimal set <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>s. Assume that P k is <str<strong>on</strong>g>the</str<strong>on</strong>g> simple projective<br />

n<strong>on</strong>-injective Λ-module associated with a source k ∈ Q. Our aim is to determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> quiver <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong>s giving End Λ (T k ).<br />

–116–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!