20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Theorem. Assume r is a comm<strong>on</strong> prime divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> f <strong>and</strong> t, <strong>and</strong> n is a divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> q ∗ ,<br />

where q ∗ q = r − 1. Then p splits completely in O n <strong>and</strong> if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists µ ∈ O n such that p<br />

does not divide I(µ), <str<strong>on</strong>g>the</str<strong>on</strong>g>n n ≦ p. In particular, for n > p, p is a comm<strong>on</strong> index divisor <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

O n namely, p divides I(γ) for all γ ∈ O n .<br />

Let c be a primitive root for r, let χ be a character <str<strong>on</strong>g>of</str<strong>on</strong>g> order n defined by χ(c) = ω<br />

where ω = e 2πi<br />

n <strong>and</strong> let g(χ) = ∑ a∈F r<br />

χ(a)ζ a be <str<strong>on</strong>g>the</str<strong>on</strong>g> Gauss sum <str<strong>on</strong>g>of</str<strong>on</strong>g> χ where F r is a finite<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> order r. Let σ(ζ) = ζ c be a generator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Galois group G <str<strong>on</strong>g>of</str<strong>on</strong>g> K over Q <strong>and</strong> set<br />

T n := 〈σ n 〉.<br />

For simplicity, we set g 0 = −1, g k = g(χ k ) for n > k > 0 <strong>and</strong> θ k = θ σk for n > k ≧ 0<br />

where θ = ∑ τ∈T n<br />

ζ τ is a trace <str<strong>on</strong>g>of</str<strong>on</strong>g> ζ.<br />

It is known that L n = Q(θ) <strong>and</strong> θ is a normal basis element <str<strong>on</strong>g>of</str<strong>on</strong>g> O n over Z (see [9, p.61,<br />

p.74])<br />

The next Lemma is useful to our object. It <strong>on</strong>ly needs to assume r is prime <strong>and</strong> n is a<br />

divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> r − 1 in this Lemma. This pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is essentially in <str<strong>on</strong>g>the</str<strong>on</strong>g> first equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) due<br />

to [9, p.62]. This idea <str<strong>on</strong>g>of</str<strong>on</strong>g> classifying primitive roots goes back to Gauss; <str<strong>on</strong>g>the</str<strong>on</strong>g> regular 17<br />

polyg<strong>on</strong> c<strong>on</strong>structi<strong>on</strong> by ruler <strong>and</strong> compass.<br />

Lemma.<br />

(1) g k = ∑ n−1<br />

s=0 ωks θ s for 0 ≦ k < n <strong>and</strong> nθ k = ∑ n−1<br />

s=0 ¯ωks g s for 0 ≦ k < n where ¯ω is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> complex c<strong>on</strong>jugate <str<strong>on</strong>g>of</str<strong>on</strong>g> ω.<br />

(2) Using (1), determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclic matrices A n , B n are given by<br />

∣ ∣ θ 0 θ 1 . . . θ n−1 ∣∣∣∣∣∣∣ g<br />

n−1<br />

0 g 1 . . . g n−1 ∣∣∣∣∣∣∣ θ<br />

|A n | :=<br />

n−1 θ 0 . . . θ n−2<br />

∏<br />

n−1<br />

g . . . ..<br />

= g k <strong>and</strong> |B n | :=<br />

n−1 g 0 . . . g n−2<br />

∏<br />

.<br />

.<br />

k=0<br />

. . ..<br />

= n n θ k .<br />

.<br />

k=0<br />

∣<br />

θ 1 θ 2 . . . θ<br />

∣<br />

0 g 1 g 2 . . . g 0<br />

(3) We have<br />

{<br />

r n−1 if n is odd,<br />

d(L n ) =<br />

(−1) r−1<br />

2 r n−1 if n is even.<br />

Some results in [7, 8] are proved again in <str<strong>on</strong>g>the</str<strong>on</strong>g> next<br />

Corollary. Let r be a comm<strong>on</strong> prime divisor <str<strong>on</strong>g>of</str<strong>on</strong>g> f <strong>and</strong> t. Then we have<br />

(1) p ≡ 1 or r ≡ 1 mod 4 (see [7, Lemma, (4) ]).<br />

(2) q ≡ −1 mod 9 in case p = 3 <strong>and</strong> f divides t (see [8, Corollary, (a)]).<br />

–122–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!