20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>the</str<strong>on</strong>g>n we obtain a commutative diagram<br />

0<br />

0 L Ω 2 B<br />

0 L P ΩB<br />

0 ΩB<br />

0<br />

Ω 2 g Ω 2 C<br />

Ωg<br />

P ΩC<br />

ΩC<br />

0 0<br />

0<br />

S 0<br />

S 0<br />

<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>refore we obtain a short exact sequence 0 → Ω 2 S → Ω 2 B → Ω 2 C → 0. C<strong>on</strong>tinuing<br />

in this fashi<strong>on</strong> we see that for each integer i ≥ 0 we get ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r short exact sequences<br />

0 → Ω i S → Ω i B → Ω i C → 0, or <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form 0 → Ω i+1 B → Ω i+1 C → Ω i S → 0. By<br />

letting α = max i∈N {l(Ω i S)}, our result follows, since <str<strong>on</strong>g>the</str<strong>on</strong>g> simple module S is periodic. □<br />

The following (most probably) well-known lemma will be used to characterize Ω-perfect<br />

maps in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> “τ-perfect” property. As usual, if M is an indecomposable n<strong>on</strong>projective<br />

module, α(M) denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-projective indecomposable direct<br />

summ<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> middle term <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending in M.<br />

Lemma 13. Let Λ be a selfinjective artin algebra <strong>and</strong> let M be an indecomposable n<strong>on</strong><br />

projective <strong>and</strong> n<strong>on</strong> simple Λ-module with α(M) = 2 with n = l(M) = l(τM). Assume<br />

also that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an irreducible map E → M where E is indecomposable <strong>and</strong> that<br />

l(E) = l(M) − 1.<br />

(a) The middle term <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at M has no n<strong>on</strong>zero<br />

projective summ<strong>and</strong>.<br />

(b) If E, M <strong>and</strong> τM are uniserial, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining summ<strong>and</strong> F <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-<br />

Reiten sequence ending at M is uniserial too <strong>and</strong> its length is l(F ) = l(M) + 1.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let 0 → τM → E ⊕ F ⊕ P → M → 0 be <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending<br />

at M, where F is indecomposable n<strong>on</strong> projective, <strong>and</strong> P is a n<strong>on</strong>zero projective module.<br />

Note first that P must be indecomposable since <str<strong>on</strong>g>the</str<strong>on</strong>g> algebra is selfinjective. Using now<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> fact that τM = rP , a length argument shows that<br />

l(F ) = 2n − l(E) − l(P ) = 2n − (n − 1) − (n + 1) = 0<br />

c<strong>on</strong>tradicting our assumpti<strong>on</strong>. This proves <str<strong>on</strong>g>the</str<strong>on</strong>g> first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lemma.<br />

For part (b), note first that <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending at M has <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

0 → τM → E ⊕ F → M → 0 where E <strong>and</strong> F are both indecomposable <strong>and</strong> l(F ) = n + 1.<br />

Hence τM is a maximal submodule <str<strong>on</strong>g>of</str<strong>on</strong>g> F . To prove <str<strong>on</strong>g>the</str<strong>on</strong>g> uniseriality <str<strong>on</strong>g>of</str<strong>on</strong>g> F , it suffices to<br />

show that τM = rF . It is folklore (see also [17], Propositi<strong>on</strong> 2.5.) that, since τM is not<br />

simple, we have an induced exact sequence<br />

0 → rτM → rE ⊕ rF → rM → 0.<br />

Counting lengths, we get l(rF ) = 2(n − 1) − (n − 2) = n. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> τM in F<br />

c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> radical <str<strong>on</strong>g>of</str<strong>on</strong>g> F , it follows that τM ∼ = rF , <strong>and</strong> F is also an uniserial module. □<br />

–82–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!