20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Definiti<strong>on</strong> 2 ([9]). A complex X • ∈ D b (mod-A) is said to have finite projective dimensi<strong>on</strong><br />

if Hom D(Mod-A) (X • [i], −) vanishes <strong>on</strong> mod-A for i ≪ 0. We denote by D b (mod-A) fpd <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

épaisse subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite projective dimensi<strong>on</strong>.<br />

Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical functor K(Mod-A) → D(Mod-A) gives rise to equivalences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

triangulated categories<br />

K −,b (P A ) ∼ → D b (mod-A) <strong>and</strong> K b (P A ) ∼ → D b (mod-A) fpd .<br />

We denote by D(−) both RHom • A(−, A) <strong>and</strong> RHom • Aop(−, A). There exists a bifunctorial<br />

isomorphism<br />

θ M • ,X • : Hom D(Mod-A op )(M • , DX • ) ∼ → Hom D(Mod-A) (X • , DM • )<br />

for X • ∈ D(Mod-A) <strong>and</strong> M • ∈ D(Mod-A op ). For each X • ∈ D(Mod-A) we set<br />

η X • = θ DX • ,X •(id DX •) : X• → D 2 X • = D(DX • ).<br />

Definiti<strong>on</strong> 3. A complex X • ∈ D b (mod-A) is said to have bounded dual cohomology if<br />

DX • ∈ D b (mod-A op ). We denote by D b (mod-A) bdh <str<strong>on</strong>g>the</str<strong>on</strong>g> full triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

D b (mod-A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes with bounded dual cohomology.<br />

Definiti<strong>on</strong> 4 ([2] <strong>and</strong> [12]). A complex X • ∈ D b (mod-A op ) bdh is said to have finite<br />

Gorenstein dimensi<strong>on</strong> if η X • is an isomorphism. We denote by D b (mod-A) fGd <str<strong>on</strong>g>the</str<strong>on</strong>g> full<br />

triangulated subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> D b (mod-A) c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> finite Gorenstein dimensi<strong>on</strong>.<br />

For a module X ∈ D b (mod-A) fGd , we set<br />

G-dim X = sup{ i ≥ 0 | Ext i A(X, A) ≠ 0}<br />

if X ≠ 0, <strong>and</strong> G-dim X = 0 if X = 0. Also, we set G-dim X = ∞ for a module<br />

X ∈ mod-A with X /∈ D b (mod-A) fGd . Then G-dim X is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Gorenstein dimensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> X ∈ mod-A. We denote by G A <str<strong>on</strong>g>the</str<strong>on</strong>g> full additive subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> mod-A c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modules <str<strong>on</strong>g>of</str<strong>on</strong>g> Gorenstein dimensi<strong>on</strong> zero.<br />

Remark 5. A module X ∈ mod-A has Gorenstein dimensi<strong>on</strong> zero if <strong>and</strong> <strong>on</strong>ly if X is<br />

reflexive, i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical homomorphism<br />

X → Hom A op(Hom A (X, A), A), x ↦→ (f ↦→ f(x))<br />

is an isomorphism <strong>and</strong> Ext i A(X, A) = Ext i A op(Hom A(X, A), A) = 0 for i ≠ 0.<br />

Remark 6. The following hold.<br />

(1) D b (mod-A) fpd ⊆ D b (mod-A) fGd ⊆ D b (mod-A) bdh <strong>and</strong> P A ⊆ G A .<br />

(2) The pair <str<strong>on</strong>g>of</str<strong>on</strong>g> functors RHom • A(−, A) <strong>and</strong> RHom • Aop(−, A) defines a duality between<br />

D b (mod-A) fGd <strong>and</strong> D b (mod-A op ) fGd <strong>and</strong> a duality between D b (mod-A) fpd<br />

<strong>and</strong> D b (mod-A op ) fpd .<br />

(3) The pair <str<strong>on</strong>g>of</str<strong>on</strong>g> functors Hom A (−, A) <strong>and</strong> Hom A op(−, A) defines a duality between G A<br />

<strong>and</strong> G A op <strong>and</strong> a duality between P A <strong>and</strong> P A op.<br />

–69–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!