20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2. Dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories.<br />

We review <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories due to R. Rouquier<br />

We need to prepare a bit <str<strong>on</strong>g>of</str<strong>on</strong>g> notati<strong>on</strong>s.<br />

Let T be a triangulated category. For a full subcategory I <str<strong>on</strong>g>of</str<strong>on</strong>g> T we denote by 〈I〉<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> smallest full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T c<strong>on</strong>taining I which is closed under taking shifts, finite<br />

direct sums, direct summ<strong>and</strong>s <strong>and</strong> isomorphisms. For full subcategories I <strong>and</strong> J <str<strong>on</strong>g>of</str<strong>on</strong>g> T we<br />

denote by I ∗ J <str<strong>on</strong>g>the</str<strong>on</strong>g> full subcategory <str<strong>on</strong>g>of</str<strong>on</strong>g> T c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> those object M ∈ T such that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an exact triangle I → M → J −→ [1]<br />

with I ∈ I <strong>and</strong> J ∈ J . Set I ⋄J := 〈I ∗J 〉.<br />

For n ≥ 1 we define inductively<br />

{<br />

〈I〉 for n = 1;<br />

〈I〉 n :=<br />

〈I〉 ⋄ 〈I〉 n−1 for n ≥ 2.<br />

Now we define <str<strong>on</strong>g>the</str<strong>on</strong>g> dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a triangulated category T to be<br />

tridim T := min{n | 〈E〉 n+1 = T for some E ∈ T }.<br />

3. Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 1 <strong>and</strong> 2<br />

First we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case when K/k is a finite extensi<strong>on</strong>. Let E be an object <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Perf(A K ) such that 〈E〉 n = Perf(A K ) for some n ∈ N. Then we see that 〈UE〉 n = Perf(A)<br />

where U : Perf(A K ) → Perf(A) is <str<strong>on</strong>g>the</str<strong>on</strong>g> forgetful functor.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case K/k is an infinite algebraic extensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> key <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

lemma.<br />

Lemma 3. Let K/k be an algebraic extensi<strong>on</strong> <strong>and</strong> E an object <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A).<br />

If an object G <str<strong>on</strong>g>of</str<strong>on</strong>g> D(A K ) bel<strong>on</strong>gs to 〈E ⊗ k K〉 n , <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an intermediate field<br />

k ⊂ K 0 ⊂ K which is finite dimensi<strong>on</strong>al over k such that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an object G ′ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

〈E ⊗ k K 0 〉 n , such that G ′ ⊗ K0 K ∼ = G in D(A K ).<br />

Let E be an object <str<strong>on</strong>g>of</str<strong>on</strong>g> Perf(A K ) such that 〈E〉 n = Perf(A K ) for some n ∈ N. Since<br />

Perf(A K ) = ∪ i∈N 〈A K 〉 i , by <str<strong>on</strong>g>the</str<strong>on</strong>g> above lemma <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an intermediate field k ⊂ K 0 ⊂ K<br />

which is finite dimensi<strong>on</strong>al over k such that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists an object E ′ <str<strong>on</strong>g>of</str<strong>on</strong>g> Perf(A K0 ) such that<br />

E ′ ⊗ K0 K ≃ E. Then we see that 〈U 0 (E ′ )〉 n = Perf(A) where U 0 : Perf(A K0 ) → Perf(A)<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> forgetful functor.<br />

To prove <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d statement, we use <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that when K/k is a finite separable<br />

field extensi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> can<strong>on</strong>ical morphism K ⊗ k K → K splits as K − K bimodules. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case when K/k is an infinite separable field extensi<strong>on</strong>, we reduce to <str<strong>on</strong>g>the</str<strong>on</strong>g> finite separable<br />

extensi<strong>on</strong> case by <str<strong>on</strong>g>the</str<strong>on</strong>g> above lemma.<br />

Theorem 2 is reduced to <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> base field k is an algebraically closed field<br />

by Theorem 1 <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemma.<br />

Lemma 4. Let A be a finite dimensi<strong>on</strong>al k-algebra. If A k<br />

is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n A is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite representati<strong>on</strong> type.<br />

–112–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!