20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ON A GENERALIZATION OF COSTABLE TORSION THEORY<br />

YASUHIKO TAKEHANA<br />

Abstract. E. P. Armendariz characterized a stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory in [1]. R. L. Bernhardt<br />

dualised a part <str<strong>on</strong>g>of</str<strong>on</strong>g> characterizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stable torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory in Theorem1.1 <str<strong>on</strong>g>of</str<strong>on</strong>g> [3], as<br />

follows. Let (T ,F) be a hereditary torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory for Mod-R such that every torsi<strong>on</strong>free<br />

module has a projective cover. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> following are equivalent. (1) F is closed under<br />

taking projective covers. (2) every projective module splits. In this paper we generalize<br />

<strong>and</strong> characterize this by using torsi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. In <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper we study<br />

a dualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eckman <strong>and</strong> Shopf’s Theorem <strong>and</strong> a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Wu <strong>and</strong> Jans’s<br />

Theorem.<br />

1. INTRODUCTION<br />

Throughout this paper R is a right perfect ring with identity. Let Mod-R be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

categories <str<strong>on</strong>g>of</str<strong>on</strong>g> right R-modules. For M ∈ Mod-R we denote by [0 → K(M) → P (M) π →<br />

M<br />

M → 0 ] <str<strong>on</strong>g>the</str<strong>on</strong>g> projective cover <str<strong>on</strong>g>of</str<strong>on</strong>g> M, where P (M) is projective <strong>and</strong> kerπ M is small in<br />

P (M). A subfunctor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> identity functor <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R is called a preradical. For a<br />

preradical σ, T σ := {M ∈ Mod-R ; σ(M) = M} is <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> σ-torsi<strong>on</strong> right R-modules,<br />

<strong>and</strong> F σ := {M ∈ Mod-R ; σ(M) = 0} is <str<strong>on</strong>g>the</str<strong>on</strong>g> class <str<strong>on</strong>g>of</str<strong>on</strong>g> σ-torsi<strong>on</strong>free right R-modules.<br />

A right R-module M is called σ-projective if <str<strong>on</strong>g>the</str<strong>on</strong>g> functor Hom R (M, ) preserves <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exactness for any exact sequence 0 → A → B → C → 0 with A ∈ F σ . A preradical σ is<br />

idempotent[radical] if σ(σ(M)) = σ(M)[σ (M/σ(M)) = 0] for a module M, respectively.<br />

A preradical σ is called epi-preserving if σ (M/N) = (σ(M) + N)/N holds for any module<br />

M <strong>and</strong> any submodule N <str<strong>on</strong>g>of</str<strong>on</strong>g> M. For a preradical σ, a short exact sequence [0 → K σ (M) →<br />

P σ (M) πσ M<br />

→ M → 0] is called σ-projective cover <str<strong>on</strong>g>of</str<strong>on</strong>g> a module M if P σ (M) is σ-projective,<br />

K σ (M) is σ-torsi<strong>on</strong> free <strong>and</strong> K σ (M) is small in P σ (M). If σ is an idempotent radical<br />

<strong>and</strong> a module M has a projective cover, <str<strong>on</strong>g>the</str<strong>on</strong>g>n M has a σ-projective cover <strong>and</strong> it is given<br />

K σ (M) = K(M)/σ(K(M)), P σ (M) = P (M)/σ(K(M)). For X, Y ∈ Mod-R we call an<br />

epimorphism g ∈ Hom R (X, Y ) a minimal epimorphism if g(H) Y holds for any proper<br />

submodule H <str<strong>on</strong>g>of</str<strong>on</strong>g> X. It is well known that a minimal epimorphism is an epimorphism<br />

having a small kernel. For a preradical σ we say that M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> X<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a minimal epimorphism h : M ↠ X with kerh ∈ F σ .<br />

For a module M, P σ (M) is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M. We say that a subclass C <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mod-R is closed under taking σ-coessential extensi<strong>on</strong>s if : for any minimal epimorphism<br />

f : M ↠ X with kerf ∈ F σ if X ∈ C <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∈ C. For <str<strong>on</strong>g>the</str<strong>on</strong>g> sake <str<strong>on</strong>g>of</str<strong>on</strong>g> simplicity we say<br />

that M is a σ-coessential extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M/N if N is a σ-torsi<strong>on</strong>free small submodule <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

M. We say that a subclass C <str<strong>on</strong>g>of</str<strong>on</strong>g> Mod-R is closed under taking σ-coessential extensi<strong>on</strong>s if<br />

: if M/N ∈ C <str<strong>on</strong>g>the</str<strong>on</strong>g>n M ∈ C for any σ-torsi<strong>on</strong> free small submodule N <str<strong>on</strong>g>of</str<strong>on</strong>g> any module M.<br />

The final versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper will be submitted for publicati<strong>on</strong> elsewhere.<br />

–208–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!