20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

By comparing this <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>and</strong> Propositi<strong>on</strong> 8, we get <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary. A graph<br />

G is said to be complete r-partite if <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a partiti<strong>on</strong> V (G) = ∐ r<br />

i=1 V i such that<br />

{i, j} ∈ E(G) if <strong>and</strong> <strong>on</strong>ly <str<strong>on</strong>g>of</str<strong>on</strong>g> a ≠ b for all i ∈ V a <strong>and</strong> j ∈ V b .<br />

Corollary 10. Closed graphs <strong>and</strong> complete r-partite graphs are weakly closed.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Assume that G is complete r-partite <strong>and</strong> V (G) = ∐ r<br />

i=1 V i. Let {i, j} ∈ E(G) with<br />

i ∈ V a <strong>and</strong> j ∈ V b . Then a ≠ b. Hence for all i < k < j, k ∉ V a or k /∈ V b . This implies<br />

that {i, k} ∈ E(G) or {k, j} ∈ E(G).<br />

□<br />

3. F -purity <str<strong>on</strong>g>of</str<strong>on</strong>g> binomial edge ideals<br />

In this secti<strong>on</strong>, we study about F -purity <str<strong>on</strong>g>of</str<strong>on</strong>g> binomial edge ideals. Firstly, we recall that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> F -purity <str<strong>on</strong>g>of</str<strong>on</strong>g> a ring R.<br />

Definiti<strong>on</strong> 11 (See [5]). Let R be an F -finite reduced Noe<str<strong>on</strong>g>the</str<strong>on</strong>g>rian ring <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic<br />

p > 0. R is said to be F-pure if <str<strong>on</strong>g>the</str<strong>on</strong>g> Frobenius map R → R, x ↦→ x p is pure, equivalently,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> natural inclusi<strong>on</strong> τ : R ↩→ R 1/p , (x ↦→ (x p ) 1/p ) is pure, that is, M → M ⊗ R R 1/p ,<br />

m ↦→ m ⊗ 1 is injective for every R-module M.<br />

The following propositi<strong>on</strong>, which is called <str<strong>on</strong>g>the</str<strong>on</strong>g> Fedder’s criteri<strong>on</strong>, is useful to determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> F -purity <str<strong>on</strong>g>of</str<strong>on</strong>g> a ring R.<br />

Propositi<strong>on</strong> 12 (See [3]). Let (S, m) be a regular local ring <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristic p > 0. Let<br />

I be an ideal <str<strong>on</strong>g>of</str<strong>on</strong>g> S. Put R = S/I. Then R is F -pure if <strong>and</strong> <strong>on</strong>ly if I [p] : I ⊈ m [p] , where<br />

J [p] = (x p | x ∈ J) for an ideal J <str<strong>on</strong>g>of</str<strong>on</strong>g> S.<br />

In this secti<strong>on</strong>, we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> following questi<strong>on</strong>:<br />

Questi<strong>on</strong>. When is S/J G F -pure ?<br />

In [8], Ohtani proved that if G is complete r-partite graph <str<strong>on</strong>g>the</str<strong>on</strong>g>n S/J G is F -pure. Moreover,<br />

it is easy to show that if G is closed <str<strong>on</strong>g>the</str<strong>on</strong>g>n S/J G is F -pure. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are many<br />

examples <str<strong>on</strong>g>of</str<strong>on</strong>g> G such that G is nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r complete r-partite nor closed but S/J G is F -pure.<br />

Namely, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is room for improvement about <str<strong>on</strong>g>the</str<strong>on</strong>g> above studies.<br />

The sec<strong>on</strong>d main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter is as follows:<br />

Theorem 13. If G is weakly closed, <str<strong>on</strong>g>the</str<strong>on</strong>g>n S/J G is F -pure.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. For a sequence v 1 , v 2 , . . . , v s , we put<br />

Y v1 (v 1 , v 2 , . . . , v s )X vs := (Y v1 [v 1 , v 2 ][v 2 , v 3 ] · · · [v s−1 , v s ]X vs ) p−1 .<br />

Let m = (X 1 , . . . , X n , Y 1 , . . . , Y n )S. By taking completi<strong>on</strong> <strong>and</strong> using Propositi<strong>on</strong> 2.2, it<br />

is enough to show that Y 1 (1, 2, . . . , n)X n ∈ (J [p]<br />

G : J G) \ m [p] . It is easy to show that<br />

Y 1 (1, 2, . . . , n)X n ∉ m [p] by c<strong>on</strong>sidering its initial m<strong>on</strong>omial.<br />

Next, we use <str<strong>on</strong>g>the</str<strong>on</strong>g> following lemmas (see [8]):<br />

–102–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!