20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

P = P ′<br />

t by t is a projective R ⊗ k K-module. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a Cohen-Macaulay R-module<br />

X with a triangle in CM(R ⊗ k V ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following form:<br />

(3.1) X ⊗ k V −−−→ X ⊗ k V −−−→ P ′ −−−→ X ⊗ k V [1].<br />

As a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 29, we have <str<strong>on</strong>g>the</str<strong>on</strong>g> following corollary.<br />

Corollary 32. Let (R 1 , m 1 , k) <strong>and</strong> (R 2 , m 2 , k) be Gorenstein complete local k-algebras.<br />

Assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> both R 1 <strong>and</strong> R 2 are isolated singularities, <strong>and</strong> that k is an infinite field.<br />

Suppose <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a k-linear equivalence F : CM(R 1 ) → CM(R 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> triangulated categories.<br />

Then, for M, N ∈ CM(R 1 ), M stably degenerates to N if <strong>and</strong> <strong>on</strong>ly if F (M) stably<br />

degenerates to F (N).<br />

Remark 33. Let (R 1 , m 1 , k) <strong>and</strong> (R 2 , m 2 , k) be Gorenstein complete local k-algebras as<br />

above. Then it hardly occurs that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a k-linear equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> categories between<br />

CM(R 1 ) <strong>and</strong> CM(R 2 ). In fact, if it occurs, <str<strong>on</strong>g>the</str<strong>on</strong>g>n R 1 is isomorphic to R 2 as a k-algebra.<br />

(See [4, Propositi<strong>on</strong> 5.1].)<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, an equivalence between CM(R 1 ) <strong>and</strong> CM(R 2 ) may happen for n<strong>on</strong>isomorphic<br />

k-algebras. For example, let R 1 = k[[x, y, z]]/(x n +y 2 +z 2 ) <strong>and</strong> R 2 = k[[x]]/(x n )<br />

with characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> k not being 2 <strong>and</strong> n ∈ N. Then, by Knoerrer’s periodicity ([10, Theorem<br />

12.10]), we have an equivalence CM(k[[x, y, z]]/(x n + y 2 + z 2 )) ∼ = CM(k[[x]]/(x n )).<br />

Since k[[x]]/(x n ) is an artinian Gorenstein ring, <str<strong>on</strong>g>the</str<strong>on</strong>g> stable degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modules over<br />

k[[x]]/(x n ) is equivalent to a degenerati<strong>on</strong> up to free summ<strong>and</strong>s by Theorem 29(ii). Moreover<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong> problem for modules over k[[x]]/(x n ) is known to be equivalent to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degenerati<strong>on</strong> problem for Jordan can<strong>on</strong>ical forms <str<strong>on</strong>g>of</str<strong>on</strong>g> square matrices <str<strong>on</strong>g>of</str<strong>on</strong>g> size n. (See Example<br />

22.) Thus by virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> Corollary 32, it is easy to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> stable degenerati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules over k[[x, y, z]]/(x n + y 2 + z 2 ).<br />

References<br />

1. K. B<strong>on</strong>gartz, A generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> M. Ausl<strong>and</strong>er, Bull. L<strong>on</strong>d<strong>on</strong> Math. Soc. 21 (1989), no.<br />

3, 255-256.<br />

2. K. B<strong>on</strong>gartz, On degenerati<strong>on</strong>s <strong>and</strong> extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al modules, Adv. Math. 121 (1996),<br />

no. 2, 245–287.<br />

3. D. Happel, Triangulated categories in <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-dimensi<strong>on</strong>al algebras, L<strong>on</strong>d<strong>on</strong><br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Lecture Note Series, vol.119. Cambridge University Press, Cambridge, 1988.<br />

x+208 pp.<br />

4. N. Hiramatsu <strong>and</strong> Y. Yoshino, Automorphism groups <strong>and</strong> Picard groups <str<strong>on</strong>g>of</str<strong>on</strong>g> additive full subcategories,<br />

Math. Sc<strong>and</strong>. 107 (2010), 5–29.<br />

5. , Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cohen-Macaulay modules, Preprint (2010). [arXiv:1012.5346]<br />

6. C.Huneke <strong>and</strong> G.Leuschke, Two <str<strong>on</strong>g>the</str<strong>on</strong>g>orems about maximal Cohen-Macaulay modules, Math. Ann. 324<br />

(2002), no. 2, 391-404.<br />

7. C.Huneke <strong>and</strong> G.Leuschke, Local rings <str<strong>on</strong>g>of</str<strong>on</strong>g> countable Cohen-Macaulay type, Proc. Amer. Math. Soc.<br />

131 (2003), no. 10, 3003-3007.<br />

8. T. Y. Lam, Serre’s c<strong>on</strong>jecture, Lecture Notes in Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, Vol. 635. Springer-Verlag, Berlin-New<br />

York, 1978. xv+227 pp. ISBN: 3-540-08657-9<br />

9. Ch. Riedtmann, Degenerati<strong>on</strong>s for representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quivers with relati<strong>on</strong>s, Ann. Scient. École Normale<br />

Sup. 4 e sèrie 19 (1986), 275–301.<br />

10. Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society,<br />

Lecture Notes Series vol. 146, Cambridge University Press, 1990. viii+177 pp.<br />

–280–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!