20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

0, because R Q <strong>and</strong> R Q ′ are identical o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>the</str<strong>on</strong>g> a-th row <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> a-th column. Let ˜X<br />

be a Λ-module corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> positive roots ∑ s<br />

k=1 r(α k); this is not sincere,<br />

but σ ˜X is sincere. Thus we see that <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>dence [X] ↦→ [ ˜X] gives a bijecti<strong>on</strong> from<br />

R 1 to R 2 .<br />

□<br />

2. A n -type<br />

Let Q be <str<strong>on</strong>g>the</str<strong>on</strong>g> equi-oriented quiver 1 ◦ −→ 2 ◦ −→ · · · −→ n ◦ <str<strong>on</strong>g>of</str<strong>on</strong>g> A n -type. In <str<strong>on</strong>g>the</str<strong>on</strong>g> following,<br />

we will sometimes c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding things <str<strong>on</strong>g>of</str<strong>on</strong>g> “A 0 -type” or “A −1 -type” to be<br />

trivial for simplicity; for example, “A n−2 × A −1 -type” means just “A n−2 -type”, <strong>and</strong> so <strong>on</strong>.<br />

Propositi<strong>on</strong> 2.1. For each k = 1, 2, . . . , n, <str<strong>on</strong>g>the</str<strong>on</strong>g> perpendicular category Per I(k) is equivalent<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> module category <str<strong>on</strong>g>of</str<strong>on</strong>g> a path algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> type A k−2 × A n−1−k .<br />

Propositi<strong>on</strong> 2.2. Let n <strong>and</strong> s be positive integers.<br />

following recurrence formula:<br />

(2.1) a(n, s) = a(n − 1, s) +<br />

∑s−1<br />

∑n−2<br />

t=0 m=−1<br />

The number a(n, s) satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

a(m, t) · a(n − 3 − m, s − 1 − t).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. Let X = ⊕ s<br />

j=1 X j be a basic hom-orthog<strong>on</strong>al partial tilting Λ-module having<br />

s distinct indecomposable summ<strong>and</strong>s. Note that X has at most <strong>on</strong>e injective direct<br />

summ<strong>and</strong>. If X does not have any injective, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> first entry <str<strong>on</strong>g>of</str<strong>on</strong>g> dim X is zero;<br />

that is, it is a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> positive roots that come from A n−1 -type. So <str<strong>on</strong>g>the</str<strong>on</strong>g> number for<br />

such modules is equal to a(n − 1, s). Assume that X has just <strong>on</strong>e injective summ<strong>and</strong>,<br />

say I(k). Then, according to Propositi<strong>on</strong> 2.1, X has t <strong>and</strong> s − 1 − t direct summ<strong>and</strong>s<br />

∑<br />

that come from A k−2 -type <strong>and</strong> A n−1−k -type, respectively. Thus we see that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist<br />

s−1<br />

t=0<br />

a(k − 2, t) · a(n − 1 − k, s − 1 − t) such modules. Since k runs from 1 to n, we obtain<br />

our asserti<strong>on</strong>.<br />

□<br />

By using <str<strong>on</strong>g>the</str<strong>on</strong>g> recurrence formula above, we prove Theorem 0.1 for A n -type. Here we<br />

notice that <str<strong>on</strong>g>the</str<strong>on</strong>g> generating functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a(n, s) = C s · ( n+1<br />

2s<br />

) can be immediately obtained<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> generalized binomial expansi<strong>on</strong>.<br />

Lemma 2.3. The generating functi<strong>on</strong> F s (x) = ∑ ∞<br />

n=0 a(n, s)xn <str<strong>on</strong>g>of</str<strong>on</strong>g> a(n, s) for fixed s is<br />

given by<br />

F s (x) = C s · x 2s−1<br />

(1 − x) 2s+1 .<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 0.1 for A n -type. First we note that a(n, 1) is nothing but <str<strong>on</strong>g>the</str<strong>on</strong>g> number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> positive roots <str<strong>on</strong>g>of</str<strong>on</strong>g> A n -type, which is equal to n(n + 1)/2 = C 1 · ( n+1<br />

2<br />

). In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n = 1, our asserti<strong>on</strong> is trivial. So we assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> asserti<strong>on</strong> (0.2) holds for all positive<br />

integers less than n (≥ 2). In <str<strong>on</strong>g>the</str<strong>on</strong>g> recurrence formula (2.1), we note that a(m, t) (resp.<br />

a(n − 3 − m, s − 1 − t)) is <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> degree m (resp. n − 3 − m) <str<strong>on</strong>g>of</str<strong>on</strong>g> F t (x) (resp.<br />

F s−1−t (x)). The coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> degree n − 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Taylor expansi<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> origin (x = 0)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

x 2s−4<br />

F t (x) × F s−1−t (x) = C t · C s−1−t ·<br />

(1 − x) 2s<br />

–129–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!