20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s that finite fields have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming<br />

weight have been given by Bogart, Goldberg, <strong>and</strong> Gord<strong>on</strong> [5] <strong>and</strong> by Ward <strong>and</strong> Wood<br />

[29]. We will not prove <str<strong>on</strong>g>the</str<strong>on</strong>g> finite field case separately, because it is a special case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>:<br />

Theorem 31. Let R be a finite ring. Then R has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property with respect to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight if <strong>and</strong> <strong>on</strong>ly if R is Frobenius.<br />

One directi<strong>on</strong>, that finite Frobenius rings have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property, first appeared in<br />

[31, Theorem 6.3]. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> (which will be given in subsecti<strong>on</strong> 5.2) is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> linear<br />

independence <str<strong>on</strong>g>of</str<strong>on</strong>g> characters <strong>and</strong> is modeled <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> in [29] <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> finite field case. A<br />

combinatorial pro<str<strong>on</strong>g>of</str<strong>on</strong>g> appears in work <str<strong>on</strong>g>of</str<strong>on</strong>g> Greferath <strong>and</strong> Schmidt [12]. More generally yet,<br />

Greferath, Nechaev, <strong>and</strong> Wisbauer have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> character module <str<strong>on</strong>g>of</str<strong>on</strong>g> any finite<br />

ring has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property for <str<strong>on</strong>g>the</str<strong>on</strong>g> homogeneous <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weights [11]. Ideas<br />

from this latter paper greatly influenced <str<strong>on</strong>g>the</str<strong>on</strong>g> work presented in subsecti<strong>on</strong> 5.4.<br />

The o<str<strong>on</strong>g>the</str<strong>on</strong>g>r directi<strong>on</strong>, that <strong>on</strong>ly finite Frobenius rings have <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property, first<br />

appeared in [32]. That paper carried out a strategy due to Dinh <strong>and</strong> López-Permouth [8].<br />

Additi<strong>on</strong>al relevant material appeared in [33].<br />

The rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> will be devoted to <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 31.<br />

5.2. Frobenius is Sufficient. In this subsecti<strong>on</strong> we prove half <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 31, that a<br />

finite Frobenius ring has <str<strong>on</strong>g>the</str<strong>on</strong>g> extensi<strong>on</strong> property, following <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment in [31, Theorem<br />

6.3].<br />

Assume C 1 , C 2 ⊂ R n are two left linear codes, <strong>and</strong> assume f : C 1 → C 2 is an R-linear<br />

isomorphism that preserves <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight. We want to show that f extends to<br />

a m<strong>on</strong>omial transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R n . The core idea is to express <str<strong>on</strong>g>the</str<strong>on</strong>g> weight-preservati<strong>on</strong><br />

property <str<strong>on</strong>g>of</str<strong>on</strong>g> f as an equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> characters <str<strong>on</strong>g>of</str<strong>on</strong>g> C 1 <strong>and</strong> to use <str<strong>on</strong>g>the</str<strong>on</strong>g> linear independence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

characters to match up terms.<br />

Let pr 1 , . . . , pr n : R n → R be <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinate projecti<strong>on</strong>s, so that pr i (x 1 , . . . , x n ) = x i ,<br />

(x 1 , . . . , x n ) ∈ R n . Let λ 1 , . . . , λ n denote <str<strong>on</strong>g>the</str<strong>on</strong>g> restricti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pr 1 , . . . , pr n to C 1 ⊂ R n .<br />

Similarly, let µ 1 , . . . , µ n : C 1 → R be given by µ i = pr i ◦f. Then λ 1 , . . . , λ n , µ 1 , . . . , µ n ∈<br />

Hom R (C 1 , R) are left R-linear functi<strong>on</strong>als <strong>on</strong> C 1 . It will suffice to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a permutati<strong>on</strong> σ <str<strong>on</strong>g>of</str<strong>on</strong>g> {1, . . . , n} <strong>and</strong> units u 1 , . . . , u n <str<strong>on</strong>g>of</str<strong>on</strong>g> R such that µ i = λ σ(i) u i , for<br />

i = 1, . . . , n.<br />

For any x ∈ C 1 , <str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> x is given by wt(x) = ∑ n<br />

i=1 wt(λ i(x)), while<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight <str<strong>on</strong>g>of</str<strong>on</strong>g> f(x) is given by wt(f(x)) = ∑ n<br />

i=1 wt(µ i(x)). Because f preserves<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hamming weight, we have<br />

n∑<br />

n∑<br />

(5.1)<br />

wt(λ i (x)) = wt(µ i (x)).<br />

i=1<br />

Using Lemma 24, observe that 1 − wt(r) = (1/|R|) ∑ π∈ ̂R<br />

π(r), for any r ∈ R. Apply this<br />

observati<strong>on</strong> to (5.1) <strong>and</strong> simplify:<br />

n∑ ∑<br />

n∑ ∑<br />

(5.2)<br />

π(λ i (x)) = π(µ i (x)), x ∈ C 1 .<br />

i=1 π∈ ̂R<br />

i=1<br />

i=1 π∈ ̂R<br />

–237–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!