20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2). We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case n = p = 3. If f is composite, <str<strong>on</strong>g>the</str<strong>on</strong>g>n f does not<br />

divide t. Thus we may assume f is prime <strong>and</strong> so r = f (see [7]). f has a primary prime<br />

decompositi<strong>on</strong> f = η¯η in Z[ω] where ω = e 2πi<br />

3 <strong>and</strong> η = ω(ω − q), (see [6, 8]). In this case,<br />

we set χ is <str<strong>on</strong>g>the</str<strong>on</strong>g> cubic residue character modulo η. Let h(x) be <str<strong>on</strong>g>the</str<strong>on</strong>g> minimal polynomial <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

θ over Q.<br />

h(x) := x 3 + a 1 x 2 + a 2 x + a 3 = (x − θ 0 )(x − θ 1 )(x − θ 2 ).<br />

where a 1 = −θ 0 − θ 1 − θ 2 = 1. If 3 does not divide I(θ), <str<strong>on</strong>g>the</str<strong>on</strong>g>n h(x) ≡ x 3 − x mod 3 by<br />

Kummer’s <str<strong>on</strong>g>the</str<strong>on</strong>g>orem <strong>and</strong> our Theorem. This c<strong>on</strong>tradicts to a 1 = 1. Thus d(θ) ≡ 0 mod 3.<br />

Using g 1 g 2 = g 1 ḡ 1 = |g 1 | 2 = r, we have<br />

∣ 1 θ 1 θ 2 ∣∣∣∣∣<br />

f = r = −|A 3 | = −(θ 0 + θ 1 + θ 2 )<br />

1 θ 0 θ 1 = θ0 2 + θ1 2 + θ2 2 − a 2 = 1 − 3a 2 .<br />

∣ 1 θ 2 θ 0<br />

Thus we obtain 3a 2 = 1 − f = −q(q + 1). On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r h<strong>and</strong>, using g 2 = ḡ 1 , f = η¯η <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Stickelberger relati<strong>on</strong> g1 3 = rη = fη (see [6]), we have<br />

∣ g 0 g 1 g 2 ∣∣∣∣∣<br />

−27a 3 = 27θ 0 θ 1 θ 2 = |B 3 | =<br />

g 2 g 0 g 1 = g0 3 + g1 3 + g2 3 − 3g 0 g 1 g 2<br />

∣ g 1 g 2 g 0<br />

= −1 + f(η + ¯η) + 3f = −1 + f(q − 1) + 3f = (q + 1) 3 .<br />

Thus we have 3 3 q 3 a 3 = (−q(q + 1)) 3 = 3 3 a 3 2 <strong>and</strong> so a 2 + a 3 ≡ a 3 2 − q 3 a 3 = 0 mod 3.<br />

Noting h ′ (θ) ≡ a 2 − θ mod 3 where h ′ (x) is <str<strong>on</strong>g>the</str<strong>on</strong>g> derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> h(x), we obtain<br />

0 ≡ −d(θ) = N L3 /Q(h ′ (θ)) ≡ h(a 2 ) ≡ a 2 − a 2 2 + a 3 ≡ −a 2 2 mod 3.<br />

Thus we have 0 ≡ 3a 2 = −q(q + 1) mod 9.<br />

Remark. Using <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> quadratic reciprocity law, we can prove<br />

q ≡ −1 mod 8 in case p = 3 <strong>and</strong> f divides t.<br />

It simplifies <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Propositi<strong>on</strong> 3.2 by Lemma 3.3 <strong>on</strong> p.172 in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper<br />

K. Dilcher <strong>and</strong> J. Knauer, On a c<strong>on</strong>jecture <str<strong>on</strong>g>of</str<strong>on</strong>g> Feit <strong>and</strong> Thomps<strong>on</strong>, pp.169-178 in <str<strong>on</strong>g>the</str<strong>on</strong>g> book,<br />

High primes <strong>and</strong> misdemeanours, edited by A. van der Poorten, A. Stein, Fields Institute<br />

Communicati<strong>on</strong>s 41, Amer. Math. Soc., 2004.<br />

We can underst<strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir pro<str<strong>on</strong>g>of</str<strong>on</strong>g> through <str<strong>on</strong>g>the</str<strong>on</strong>g> next some results in this order :<br />

• Ex. 11 <strong>on</strong> p.231, <strong>and</strong> p.103 in <str<strong>on</strong>g>the</str<strong>on</strong>g> book, B. C. Berndt, R.J. Evans, K. S. Williams,<br />

Gauss <strong>and</strong> Jacobi Sums, Wiley, New York, 1998.<br />

• Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 2 <strong>on</strong> p.139 in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper, R. Huds<strong>on</strong> <strong>and</strong> K. S. Williams, Some<br />

new residuacity criteria, Pacific J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Math. 91(1980), 135-143.<br />

• The tables for <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclotomic numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> order 6 <strong>and</strong> p.68 in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper, A. L.<br />

Whiteman, The cyclotomic numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> order twelve, Acta. Arithmetica 6 (1960),<br />

53-76.<br />

✷<br />

–123–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!