20.04.2014 Views

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

Proceedings of the 44th Symposium on Ring Theory and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Propositi<strong>on</strong> 16. Let C s be a stable comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> type Z∆ where ∆ is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Ẽ6, Ẽ7, Ẽ8,<br />

à 1 , A ∞ . Then every module in C s is eventually Ω-perfect.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. The case where ∆ = A ∞ was treated in [20], (Theorem 2.11. <strong>and</strong> Lemma 2.6.).<br />

C<strong>on</strong>sider now <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly case when <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nected comp<strong>on</strong>ent Z∆ has no tip, that is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case when ∆ = Ã1, that is, <str<strong>on</strong>g>the</str<strong>on</strong>g> Kr<strong>on</strong>ecker quiver. Let M ∈ C s with no projective or<br />

simple predecessors. The Ausl<strong>and</strong>er-Reiten sequence ending at M is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

0 → τM [f 1,f 2 ] t<br />

−→ E ⊕ E [g 1,g 2 ]<br />

−→ M → 0<br />

<strong>and</strong> it is obvious that all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> irreducible maps f 1 , f 2 , g 1 , g 2 are epimorphisms, or all are<br />

m<strong>on</strong>omorphisms. We claim that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are all epimorphisms. If <str<strong>on</strong>g>the</str<strong>on</strong>g>y are m<strong>on</strong>omorphisms,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n in <str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence<br />

0 → τE [τg 1,τg 2 ] t<br />

−→ τM ⊕ τM [f 1,f 2 ]<br />

−→ E → 0<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> maps τg 1 , τg 2 are also m<strong>on</strong>omorphisms. C<strong>on</strong>tinuing in <str<strong>on</strong>g>the</str<strong>on</strong>g> positive τ directi<strong>on</strong> we<br />

obtain an arbitrary l<strong>on</strong>g chain or irreducible m<strong>on</strong>omorphisms<br />

· · · τ i E ↩→ τ i M ↩→ τ i−1 E ↩→ · · · ↩→ E ↩→ M<br />

which is absurd. We can make <str<strong>on</strong>g>the</str<strong>on</strong>g> same argument for ΩM, <strong>and</strong> it follows that M is<br />

Ω-perfect.<br />

Assume now that ∆ is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining finite quiver Ẽi, take M in C s with α(M) = 3,<br />

such that M has no projective or simple predecessor in C <strong>and</strong> let C M be <str<strong>on</strong>g>the</str<strong>on</strong>g> full subquiver<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> C, defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> vertices which are predecessors <str<strong>on</strong>g>of</str<strong>on</strong>g> M. If X ∈ C M with α(X) = 1<br />

(hence X corresp<strong>on</strong>ds to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 3 tips <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆, <str<strong>on</strong>g>the</str<strong>on</strong>g>n X is Ω-perfect by Remark 3.2, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

irreducible map Y → τX is an Ω-perfect epimorphism, <strong>and</strong> τX → Y is injective <strong>and</strong><br />

Ω-perfect. C<strong>on</strong>sequently all irreducible maps between indecomposable modules in C M are<br />

Ω-perfect, hence all indecomposable modules N ∈ C M with α(N) ≤ 2 are Ω-perfect. Take<br />

finally V ∈ C M with α(V ) = 3 <strong>and</strong> let<br />

0 → τV [f 1,f 2 ,f 3 ] t<br />

−→ ⊕ 3 i=1X i<br />

[g 1 ,g 2 ,g 3 ]<br />

−→ V → 0<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Ausl<strong>and</strong>er-Reiten sequence ending in V . The irreducible maps f i all are surjective,<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> g i are injective. Choose j ≤ 3, let ⊕ i X i = Y ⊕ X j <strong>and</strong> let [g, g j ] : Y ⊕ X j → V<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> sink map. Since f j is an Ω-perfect epimorphism, <str<strong>on</strong>g>the</str<strong>on</strong>g> same holds for <str<strong>on</strong>g>the</str<strong>on</strong>g> ”parallel”<br />

morphism g, hence V is Ω-perfect, too.<br />

□<br />

As we will see very so<strong>on</strong>, it turns out that if C is a comp<strong>on</strong>ent in which no irreducible<br />

map is Ω-perfect, <str<strong>on</strong>g>the</str<strong>on</strong>g>n every n<strong>on</strong> projective module in C has complexity at most 2. In<br />

fact, we have a slightly more general result. We start with <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

Propositi<strong>on</strong> 17. Let C be an indecomposable n<strong>on</strong> projective, <strong>and</strong> n<strong>on</strong> τ-periodic module<br />

<strong>and</strong> assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist irreducible morphisms B → C <strong>and</strong> τC → B that are not<br />

eventually Ω-perfect. Then, <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists a positive integer α such that for each n ≥ 0,<br />

l(Ω 2n C) ≤ l(C) + nα. In particular, C <strong>and</strong> every n<strong>on</strong>projective module in <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

Ausl<strong>and</strong>er-Reiten comp<strong>on</strong>ent has complexity 2.<br />

–84–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!